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INTRODUCTION  

 

A sine qua non of neoclassical growth theory is the existence of an aggregate 

production function. It is the very first equation of Solow’s (1957) seminal 

paper. The widely used growth accounting approach, following Solow’s (1957) 

seminal work, as well as the recent developments in endogenous growth theory, 

are grounded in the aggregate production function. (See, for example, Barro and 

Sala-i-Martin, 2004, especially chapters 4 and 10.) Yet it has been known for a 

long time just how flimsy are its theoretical foundations. Indeed, Solow (1957, p. 

312) himself conceded that “it takes something more than the usual ‘willing 

suspension of disbelief’ to talk seriously of the aggregate production function”. 

But this reservation was quickly glossed over – it “is only a little less legitimate 

a concept than, say, the aggregate consumption function”. 

 The theoretical criticisms of the aggregate production function involve 

both the “aggregation problem” that dates from the 1940s and the Cambridge 

Capital Theory Controversies of the 1960s and 1970s. Fisher (1992) has shown 

with respect to the former that the problems of aggregation are so severe that the 

aggregate production cannot be said to exist – not even as an approximation.2  

The Cambridge Capital Theory Controversies proved to be more controversial 

and generated a great deal of heated debate in the leading academic journals. 

Fisher (2003) has argued that the issues involved are merely a subset of a more 

general aggregation problem, although Cohen and Harcourt (2003 a&b) consider 

that there is more to it than that. Nevertheless, whatever viewpoint one 

subscribes to, both serve to demonstrate the shortcomings of the neoclassical 

production function. 

 It is remarkable that although these arguments have been around for over 

half a century and while they were briefly acknowledged in textbooks and 

surveys in the 1970s, any reference to them has all but completely disappeared 

                                                 
 
2   For a survey of these issues see Felipe and Fisher (2003). 
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from the current literature. This is notwithstanding there has been no convincing 

refutation of these criticisms. They have simply been assumed away or ignored.  

 So why is the aggregate production function so widely and uncritically 

used? The answer seems to involve a form of Friedman’s (1951) methodological 

instrumentalism. All theories, so the argument goes, involve heroic abstraction 

and unrealistic assumptions, but what matters is their predictive ability. The 

aggregate production function, it is argued, passes this test with flying colours. 

The problem with this defence, as we shall show, is that the estimation of a 

putative aggregate production function using constant-price monetary (value) 

data cannot provide any inferences about the values of the putative parameters of 

the production function (output elasticities, aggregate elasticity of substitution) 

or the rate of technical progress. The reason is that there is an underlying 

accounting identity that relates these variables.  This identity can be easily 

rewritten in a form that resembles a production function.  This precludes any 

meaningful estimation of the “production function” and interpretation of the 

coefficients as estimates of an underlying technology. This critique is arguably 

the most damaging for the aggregate production function, because it applies even 

if there were no aggregation problems.  

 This is not a new critique, but first came to prominence in a rudimentary 

form in Phelps Brown’s (1957) criticism of Douglas’s cross-industry regression 

results (see, for example, Douglas, 1948), and elements of it can be traced back 

to Bronfenbrenner (1944) and Marshak and Andrews (1944).  The critique was 

later formalised by Simon and Levy (1963) and Shaikh (1974, 1980, 1987) 

generalised it to time-series estimation of production functions. Simon (1979a) 

also considered the criticism in the context of both cross-section and time-series 

data and thought it serious enough to mention it in his Nobel prize lecture 

(Simon, 1979b). The criticism was re-examined and extended by Felipe and 

Adams (2005), Felipe and McCombie (2001, 2003, 2005 a&b, 2006, 2007), 

Felipe (2001 a&b), Felipe and Holz (2001), McCombie (1987, 1998 a & b, 

2000-2001, 2001), McCombie and Dixon (1991) and McCombie and Thirlwall 

(1994). The critique as applied to cross-section data was also “rediscovered” by 

Samuelson (1979).  
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 While Cramer (1969), Wallis (1973) and Intrilligator (1978) in their 

econometric textbooks, and Walters (1966) in his survey on production and cost 

functions, have mentioned the argument, none pushed it to its logical conclusion:  

namely, that it invalidates any attempt to test, or estimate, the aggregate 

production function, per se. (See McCombie, 1998a, for a discussion.) Solow 

(1974, 1987), it is true, did attempt refutations of a couple of aspects of the 

critique, but these are not compelling (Shaikh, 1980, McCombie, 2001, Felipe 

and McCombie, 2005a). 

 The implications of the critique are far reaching. It implies that all those 

areas of neoclassical macroeconomics that use the aggregate production function 

(with, or without, the assumption that factors are paid their marginal products) 

have no theoretical or empirical basis. Because of the accounting identity, any 

estimation of a putative aggregate production function can be made, through a 

suitable specification, to give a perfect fit to the data with constant returns to 

scale and with the output elasticities equalling the respective factor shares. This 

is true even though the aggregate production function does not exist and, for 

example, individual firms may be subject to substantial returns to scale. 

Consequently, the estimation of aggregate production functions is problematic, 

to say the least. 

 One way of forcefully illustrating the critique is to use simulation 

experiments. The advantage of this approach is that it allows us to know 

precisely what is the underlying micro-structure of the economy. Suppose, for 

example, the Cobb-Douglas production function gives a good fit to the 

aggregated data when we know that either the underlying technology of the firms 

in no way resembles the Cobb-Douglas production function, or, if it does, the 

conditions for successful aggregation are (deliberately) violated.  This should at 

least give us reason to pause for thought. To this end, we review four simulation 

exercises that clearly demonstrate just how flimsy are the foundations of the 

aggregate production function and, hence, neoclassical growth theory. First, 

however, we briefly review the critique.  

 
AGGREGATE PRODUCTION FUNCTIONS AND THE ACCOUNTING 
IDENTITY 
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The standard analysis of neoclassical production theory is well known and so is 

only briefly recapitulated here. The production function, which is essentially a 

microeconomic concept, in a general form is written as: 

 

   Qt = f(Kt, Lt, t)     (1) 

 

where Q, K, L, and t are output, capital, labour and a time trend that acts as a 

proxy for technical change. Theoretically, Q and K should be measured in 

homogenous physical units as equation (1) is a technological relationship 

(Ferguson, 1971). Equation (1) may be expressed in growth rates as: 

 

        (2) tttttt L̂K̂Q̂ βαλ ++=

 

The symbol ^ above a variable denotes a growth rate. α and β are the 

technologically-determined output elasticities of capital and labour and λ is the 

rate of technical change, all of which may change over time.  

 If there is perfect competition and firms are paid their marginal products, 

then it can be simply shown that the following holds: 

 

       (3) tttttt L̂)a(K̂aQ̂ −++= 1λ

 

where at and (1-at) are the factor shares. 

 From Euler’s theorem, using equation (1) output may be written in 

constant-price value terms as:  

 

  p0 Qt = p0 fKt Kt + p0 fLtLt = tttt LwK +ρ  (4) 

 

where ρ is the rental price of each machine (i.e. the price per unit of time) and w 

is the wage rate, both measured in constant-price money terms and p0 is the base-

year price. From the dual, given the usual neoclassical assumptions, equation (3) 

can be derived by differentiating equation (4) as: 
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   (5) ttttttttt L̂)a(K̂aŵ)a(ˆaQ̂ −++−+= 11ρ

 

where ˆ ˆ(1 )t t t ta a twλ ρ= + − .  

Such a discussion appears in all standard microeconomic textbooks and is 

carried seamlessly over into macroeconomic textbooks with no discussion of the 

problems involved in applying this analysis to the whole economy or a particular 

industry.    

 But, as we noted above, constant-price monetary data have to be used 

empirically to measure both output and capital, and it is here that an 

insurmountable difficulty arises both at the firm and industry levels.  From the 

national accounts, the following identity must always hold at any level of 

aggregation:3 

 

   Vt ≡  rtJt + wt Lt   (6) 

 

where r is the rate of profit (a pure number)  and w is the average real wage rate. 

V is value added and J is the constant price value of the capital stock, usually 

calculated by using the perpetual inventory method. We use V instead of Q and J 

instead of K to emphasise the distinction between constant-price monetary values 

and physical units. The total compensation of capital is given by the rate of profit 

(which in competitive capital markets equals the rate of interest) multiplied by 

the constant price value of the capital stock, i.e., rtJt . It also equals the rental 

price of capital multiplied by the number of machines i.e., ρtKt . Consequently,  

relationship between Jt and Kt is Jt = (ρ t/rt)Kt.
4  In other words, from equation 

(6), the sum of total profits and the total compensation of labour must equal 

value added. Equation (6) can also be written, in growth rates, as: 

  

ttttttttt L̂)a(Ĵaŵ)a(r̂aV̂ −++−+≡ 11    (7) 

 
                                                 
3  The argument equally applies to gross output, when materials are included as an input. 
4 For expositional ease we ignore capital gains/loses and obsolescence. 

 6 



                                                        

It can readily be seen that equation (7) is formally equivalent to equation (5) 

when the latter is summed over firms and Q and K are expressed in constant 

prices.5 In these circumstances, , which is the growth of the rate of profit (a 

pure number), equals 

tr̂

tρ̂ . But it should be noted that equation (7) does not 

require any of the neoclassical assumptions used to derive equation (5), 

including the existence of an aggregate production function. Thus, equation (5), 

when expressed using monetary values for output and capital, must always hold 

by virtue of the identity given by equation (6), and may give the misleading 

impression that equation (5) holds for any level of the economy, notwithstanding 

the aggregation problems which are erroneously assumed to be negligible. 

 Neoclassical production theory generally uses a specific functional form 

for equation (1), such as a Cobb-Douglas, CES, or translog production function. 

This is then estimated to derive values for the parameters of interest, such as the 

aggregate elasticity of substitution. This does not affect the argument. If equation 

(6) is expressed in instantaneous growth rates and then integrated, we derive 

purely as a result of a mathematical transformation, the result that at a specific 

time τ : 

 

   Vτ   ≡ rτ Jτ  + wτ  Lτ                 (8) 

       ≡     (9) )a1(a)a1(a
o LJwrB ττττ

ττττ
−−

              (10) )a1(a LJA ττ
τττ
−≡

 

B is the constant of integration and is equal to . The shares are 

‘constant’ because only one point of time (τ) is being considered. Consequently, 

if we use data for an economy or industry for, say, any one year, then the right-

hand-side of equations (8), (9) and (10) will give identical values for value 

added. Consequently, at any point of time, a Cobb-Douglas will always give a 

good fit to the data, simply as an alternative mathematical way of writing the 

identity given by  equation (6). More generally, if several periods are considered, 

)a(a )a(a ττ
ττ

−−− − 11

                                                 
5 We ignore the aggregation problems. 

 7 



                                                        

equation (10) is an alternative way of writing the accounting identity if factor 

shares are constant over the time periods being considered. 

 If we use cross-industry or cross-regional data and estimate in 

logarithmic form, it follows from equation (10) that we should find an almost 

perfect fit to the extent that the variation in the logarithm of the wage rate and 

the rate of profit is small and the factor shares do not greatly differ between 

observations. This is precisely what Douglas’s many cross-sectional regressions 

in the 1930s found, with the coefficients on capital and labour nearly identical to 

their factor shares. Although, of course, this result is purely an artefact of the 

accounting identity, Douglas (erroneously) concluded that it proved the 

neoclassical theory of distribution and refuted the Marxian theory (Douglas, 

1976). 

βα
iii LAJV =

 Returning to time-series estimation, a stylised fact is that there is no 

discernible trend in the rate of profit, i.e., 0ˆ =tr , over the long run and the 

growth of the real wage grows at roughly a constant rate, i.e., =tŵ ŵ . Moreover, 

it is generally found that factor shares are roughly constant over time, i.e. 

and aat = aat −=− 11 . (A constant mark-up pricing policy will, inter alia, give 

this result.)6 Hence the identity given by equation (6) may be expressed as:

 

 Vt ≡ rt Jt + wt Lt      (11) 

ntity, 

estimation period and, secondly, the path over time of the weighted rate of profit 
                                                

 

 

≡ )a1(
t

a
t

t
o LJeA −λ 

 

where λ = ŵ)a( −1 . Equation (11) is nothing more than the accounting ide

but resembles a Cobb-Douglas relationship where α ≡ a and (1-α) ≡ (1-a). 

 But why do estimations of production functions not always give good 

statistical fits? The fact that they do not may give the impression that production 

functions are actually behavioural equations. The poor regression results could 

be due to two reasons. First, factor shares may vary considerably over the 

 
6 Fisher (1971) showed using simulation analysis that constant aggregate factor shares are not the 
result of an aggregate Cobb-Douglas production function.  See the discussion of Fisher’s 
simulation in the next section. 
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and the wage rate ( ) may not be sufficiently accurately proxied 

by a linear time-trend (

tttt wara ˆ)1(ˆ −+

λ ). In other words, the two assumptions to transform 

equation (6) into equation (11) may be empirically incorrect. Using simulation 

analyses, McCombie (1998) and Felipe and Holz (2001) have shown that 

variations in factor shares do not prevent the Cobb-Douglas form from generally 

yielding acceptable results.  

It is the second assumption, that is, the approximation of 

( ) through a linear trend that is more often incorrect, and this can 

significantly bias the coefficients on the capital and labour variables and can 

even be responsible for suggesting, for example, that there are increasing returns 

to scale. But the fit to the identity can always be improved by the introduction of 

a suitable non-linear time trend (and there is nothing in neoclassical production 

theory that says technical progress has to be a linear function of time). 

Alternatively, including a suitable capacity utilisation variable or adjusting the 

capital and labour input for the intensity of use can have the same effect. If factor 

shares vary over time, then a functional form that is more flexible than the Cobb-

Douglas (such as a Box-Cox transformation, which turns out to be similar to the 

CES) could always be used. This implies that if the path of the factor shares is 

not assumed to be constant, equation (6) can be transformed into functional 

forms that resemble CES or translog production functions.  See, for example, 

Felipe and McCombie (2001) for the derivation of the CES from the identity. 

tttt wara ˆ)1(ˆ −+

 The argument is simple and devastating. There is no point in estimating 

production functions using value (monetary) data. There are qualifications, such 

as the difference between the ex post rate of profit used in the identity and the 

neoclassical concept of the rental price of capital, but this does not significantly 

affect the argument and will not be considered here (see Felipe and McCombie, 

2007).  

 The argument for the Cobb-Douglas production function is summarised 

in Table 1 where it is assumed that constant factor shares result from a constant 

mark-up pricing policy (although there are other reasons why factor shares do 

not show much variation over time).  We next turn to a consideration of four 

simulation exercises that illustrate the issues involved. 
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Table 1 The Relationship Between the Accounting Identity and the Aggregate  
Cobb–Douglas Production Function Using Time-Series Data 

______________________________________________________________________
The Accounting Identity The Neoclassical Production Function 

  
Prices are a mark-up on unit labour costs for firm i: The micro production function with constant 

returns to scale is given by:  
 

i

ii
ii Q

Lw
)1(p π+=  Qi = A0eλtKi

αLi
(1-α) 

  Aggregation problems and the Cambridge Capital 
Theory Controversies show that theoretically the 
aggregate production function does not exist. 
Nevertheless, it is assumed that: 

A constant mark-up gives constant shares of capital 
(a) and labour (1-a) in total value added, regardless 
of the underlying technology. 
  
a = π/(1+π) and (1-a) = 1/(1+π) 

ii
QΣ  = Q = A0eλtKαL(1-α) 

 
The accounting identity is given by:  
 Assuming (i) perfect competition and the (ii) 

aggregate marginal productivity theory of factor 
pricing gives: 

piQi ≡ Vi ≡ riJi +wiLi  
 
where ri = (pi Qi – wiLi)/Ji  
 

ρ==
∂
∂

Kpf
K
Qp and wpf

L
Qp L ==
∂
∂  Summing over industries gives: 

 
 V =  iii

QpΣ  = rJ + wL From Euler’s theorem: 
  
Q =  fKK + fLL There are no serious aggregation problems. 

Aggregation may actually reduce the variability of 
the aggregate factor share compared with the 
individual factor shares. 

 
and the cost identity is: 
 
pQ = ρK + wL  or Q = (ρ/p)K +(w/p)L   
 By definition (and making no assumption about the 

state of competition or the mechanism by which 
factors are rewarded) the following conditions hold: 

where ρ/p and w/p are physical measures and equal  
fK and fL. It is assumed for empirical analysis that Q 
= V and (ρ/r)K = J where r is the rate of interest, 
which is assumed to equal the rate of profit. Hence, 

 

  
J
V
∂
∂  ≡ r and 

L
V
∂
∂

≡ w    ρK = rJ. 
  
Using time-series data and estimating  Given constant factor shares, the accounting 

identity at time t may be written as: lnVt = c + b1t + b2 ln Jt + b3 ln Lt provides estimates 
of b2 and b3 , which are the aggregate output 
elasticities of labour and capital. If a good statistical 
fit is found, it is inferred that the estimation has not 
refuted the hypothesis of the existence of the 
aggregate production function. 

 
Vt = Brt

a wt
(1-a)Jt

aLt
(1-a) 

 
or,  assuming the stylized fact that 
 a + (1-a)  = (1- a)  = λ, as: tr̂ tŵ ŵ  
 The estimates of b2 and b3 equal the observed factor 

shares, i.e.,  Vt = Beλt Jt
a Lt (1-a) 

 b2 = α = a  and  
Estimating lnVt = c + b1t + b2 ln Jt + b3 ln Lt b3 = (1-α) = (1-a) 
gives estimates of b2 and b3  exactly equal to the 
factor shares for definitional reasons: 

 
if assumptions (i) and (ii) above hold. If this is 
found to occur, it constitutes a failure to refute the 
theory that markets are competitive and factors are 
paid their marginal products. 

i.e. b2 = a, and b3  = (1-a). 
 
It is always possible to find an approximation that 
will give a perfect statistical fit to the data. 
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Table 2 (cont.) The Equifinality Theorem (Felipe and McCombie, 2003).     
 
Estimating lnV = c + b1t + b2 ln J + b3  lnL will always give a perfect fit to the data, 
provided factor shares are constant and the stylized fact a +(1-a)  = (1-a)  = λ  
holds. This is the case irrespective of whether there is a “true” underlying aggregate 
Cobb-Douglas production function (no matter how theoretically implausible this may be) 
or no aggregate production function exists at all.  The data cannot discriminate between 
these two cases. (The same result holds using growth rates.) If the condition of constant 
factor shares and a constant growth of the weighted wage and profit rates is not met, it is 
still possible to obtain a perfect fit by a more flexible approximation to the accounting 
identity than that given by the Cobb-Douglas. It is, therefore, not possible empirically to 
test the existence of the aggregate production function or the aggregate marginal 
productivity theory of factor pricing. 

tr̂ tŵ ŵ

_________________________________________________________________ 

Source: Felipe and McCombie (2005a) 

 

FOUR SIMULATION EXERCISES7 
 

(i) Fisher’s (1971) ‘Aggregate Production Function and the Explanation of 

Wages’8 

 

Fisher’s (1971) approach in his simulation experiments was to start with well-

defined Cobb-Douglas micro-production functions at the firm or industry level. 

Having constructed the data for these separate firm production functions annually 

over a twenty-year period, the statistics were then summed and used to estimate 

an aggregate production function. A proxy for the aggregate capital stock was 

constructed, but this suffered from an aggregation problem. When the 

macroeconomic data were used to estimate an aggregate production function, 

Fisher, to his evident surprise, found the results were remarkably well determined 

and the data gave a good prediction of the wage rate, even though the aggregate 

production function did not exist. 

 To elaborate: Fisher proceeded by constructing a large number of 

hypothetical economies, each comprising of 2, 4, or 8 “firms”, depending upon 

 
7   For reasons of space, we do not discuss the Monte-Carlo simulation experiments of Felipe and 

Holz (2001) that give some interesting insights into the econometric issues involved in the 
estimation of the Cobb-Douglas. 

8   See also the discussion in Shaikh (1980) 



                                                        

the experiment. The micro Cobb-Douglas production functions of each firm 

exhibited constant returns to scale. Perfect competition was assumed to prevail. 

Hence, the underlying economy was quintessentially neoclassical. The individual 

firms had different output elasticities; in one series of experiments the values of 

labour’s output elasticities were chosen to be uniformly spread over the range of 

0.7 to 0.8 and, in the other, over the range of 0.6 to 0.9, so that in the four-firm 

case the values were 0.6, 0.7, 0.8, and 0.9. The unweighted average in all cases 

was 0.75. 

  The labour force and the capital stock were constructed to grow at 

predetermined rates over the 20-year period. Technical change occurred at a 

constant rate that differed between firms, or was absent.  Output was 

homogeneous and capital was heterogeneous and firm specific. Given this latter 

constraint, labour was allocated between firms such that the marginal product of 

labour was constant across firms. The heterogeneous capital was not allocated 

between firms so that the marginal dollar invested in each firm was the same. 

Moreover, as the capital stocks were heterogeneous, they could not be simply 

added together, so an index, with all its attendant aggregation problems, had to be 

constructed.  

 Consequently, there were a number of reasons for anticipating that the 

aggregate Cobb-Douglas production function would not give a good fit to the 

generated data. 

 

• The exponents of the individual Cobb-Douglas micro-productions 

differed. 

• Capital was firm specific and not allocated optimally between firms. 

• The heterogeneity of the capital stock meant that an index of capital 

has to be constructed, with the consequent aggregation problems. 

• The firm data were summed arithmetically to give the aggregate 

variables. 
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Fisher ran 830 simulations using a number of different assumptions and estimated 

the following relationships using time-series data aggregated across the 

individual firms: 

 

lnVt = c +b4t + b5ln  + b6lnLt  (12) *
tJ

ln(Vt/Lt) = c +b4t + b5 ln   (13) )L/J( t
*
t

 

where V is aggregate value added9 and J* is an index of capital, which will be 

discussed below. Note that it differs from J used earlier in equation (6). (The time 

trend was dropped for the experiments where no technical change was 

introduced.) 

 Fisher found uniformly high R2s of generally around 0.99, a value not 

untypical of R2s found using real, as opposed to hypothetical, data. Generally 

speaking, the aggregate production functions gave well-defined estimates, 

especially when constant returns were imposed to remove the multicollinearity 

between lnL and lnJ* (equation (13)). 

 However, the main focus of the study was on the degree to which the 

aggregated production function succeeded in explaining the generated wage data. 

It was found that, in the main, there were exceptionally good statistical fits, much 

to Fisher’s surprise.  

  We should not expect the prediction of wages to be very accurate if the 

variance of labour’s share is large, but “while it is thus obvious that a low 

variance of labor’s share is a necessary condition for a good set of wage 

predictions, it is by no means obvious that this is also a sufficient condition. Yet, 

by and large, we find this to be the case” (Fisher 1971, p.314). This result occurs 

even when it can be shown unequivocally that the “underlying technical 

relationships do not look anything like an aggregate Cobb-Douglas (or indeed 

any aggregate production function) in any sense” (p.314, emphasis in the 

                                                 
9 Note that as output is assumed to be homogeneous by Fisher, we could equally have used the 
notation Q. 
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original). Fisher came to the conclusion that “the point of our results, however, is 

not that an aggregate Cobb-Douglas fails to work well when labor’s share ceases 

to be roughly constant, it is that an aggregate Cobb-Douglas will continue to 

work well so long as labour’s share continues to be roughly constant, even though 

that rough constancy is not itself a consequence of the economy having a 

technology that is truly summarised by an aggregate Cobb-Douglas” (Fisher, 

1971, p.307, emphasis added). 

         Why did Fisher get such surprising results?  We may explain this as 

follows.10 Consider n firms or industries, each of which has a “true” production 

function given by where i = 1, … n, and the output elasticities 

differ. K is the firm-specific capital stock (in terms, of say, numbers of identical 

machines). To generate an aggregate capital stock, Fisher notes that Euler’s 

theorem holds:

)(
itititit

ii LKAQ αα −= 1

11 

   

       (14) it

n

1i
itttt KLwV ∑

=

+≡ ρ

 

where ρt is again the rental price of capital, i.e., the competitive cost of hiring a 

machine for one period. “This means that at any moment of time, the sum of12 

the right-hand side of [14] makes an excellent capital index” (p. 308). Fisher 

therefore runs the model for the individual firms over the twenty-year period, and 

then obtains the sum of gross profits from the accounting identity for the firm. 

Then summing the number of machines for each firm, he obtains an average 

rental price of capital for each firm, which by definition is constant over the 

period: 

 

                                                 
10 See Shaikh (1980) for an explanation along different lines. 
11 Note that as equation (14) is an accounting identity, it will hold under all circumstances. 
12 Fisher clearly means “on” here rather than “of”. 
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it

20

1t

itit

20

1t
i

K

K

∑

∑

=

=≡

ρ
ρ       (15) 

 

The index of the aggregate capital stock is then given by: 

 

  it

n

1i
i

*
t KJ ∑

=

≡ ρ        (16) 

 

 It should be noted that this index does not fulfil the necessary aggregation 

conditions. 

 

The problem, of course, occurs because the relative magnitudes of the [ρi(t)] not 
only do not remain constant over time but also are not independent of the 
magnitude of L(t); this is the essence of the capital-aggregation problem. 

Nevertheless, it seems clear that an aggregate production function will 
do best if its capital index comes as close as possible to weighting different 
capital goods by their rentals. (Fisher, p.308, omitting a footnote) 

 

 The definition of value added for the ith firm is:  

   

  *
it

it

it
ititititititit JLwKLwV

ρ
ρρ +≡+≡  (17) 

  

We may sum equation (17) over the n firms to give 

  

 Vt ≡ ≡ Lt +      (18) 

  

∑
n

i
itV tw *

tt Jδ

where wt is the (weighted) average wage rate and  δt ≡ (Vt - wtLt)/  . The 

variable δt will be approximately equal to unity to the extent that the deviations of 

*
tJ

itρ  from itρ tend to wash out when aggregated across firms. In other words, for 
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every firm for which itρ overstates itρ there is a firm (or group of firms) where the 

itρ understates the rental price by approximately the same amount. A stronger 

assumption that gives the same result is that the rental price of capital for each 

firm does not greatly vary over time so itit ρρ ≅ . 13
 It may be seen that the 

aggregate share of labour will be  where θi =  and ai 

is constant over time. (1-at) will be constant if θit is assumed either to be roughly 

constant or to vary in such a way as to make (1-at) constant.

∑
=

−=
n

i
itit )a()a

1
1 θ

)a1(
t

a*
t

t
0t LJe −λ

tw

−(1

A=

tit V/V

14 We can now 

explain why an aggregate production function will give a good fit to the data. 

Even though the factor shares differ between firms, if in aggregate they are 

roughly constant, then assuming δ  = 1 or is constant over time, differentiating 

equation (18) and integrating will give 

 

  or V    (19) )a1(
t

a*
t

)a1(
tt LJBwV −−=

 

where λ is the constant growth rate of weighted by (1-a) and B is again the 

constant of integration. Thus, as Fisher (1971, p.325) concludes, it is “very 

plausible that in these experiments rough constancy of labor’s share should lead 

                                                 
13    Equation (18) differs from the identity derived from the national accounts Vt ≡ Lt + , 

where  is the rate of profit. is the value of the capital stock calculated by the perpetual 
inventory method and equals the number of machines multiplied by their purchase price 
appropriately deflated (not their rental price, which is the price per period). As we 
demonstrated above, if we assume for expositional purposes that equals the rate of interest, 

then  and Vt ≡  Lt + . (For expositional ease, we again 

abstract from capital gains and deprecation.) Consequently, if 

tw tt Jr

tr

it =

tJ

w

tr

1
ititit KrJ )/(ρ t tttttt JrLwJ +≅*δ

t ≅δ  then or the total 
compensation of capital (c.f., equation (14)). 

J *
t Jrt≅

   
14 With two firms, the firms’ shares in total output have to be constant for aggregate labour’s 

share (or the aggregate output elasticity of labour) to be constant. (This assumes that the 
individual firm’s labour shares are constant.)  But this is not true if there are more than two 
firms. Take the four-firm case where the labour shares are 0.6, 0.7, 0.8 and 0.9. At time t, if the 
firms’ shares in total output are 0.25, 0.25, 0.25 and 0.25, the aggregate value of labour’s share 
will be 0.75. It will, however, still take the same value at time t+1 if the firms’ shares change 
to 0.167, 0.333, 0.333, and 0.167.  
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to a situation in which an aggregate Cobb-Douglas gives generally good results 

including good wage predictions, even though the underlying technical 

relationships are not consistent with the existence of any aggregate production 

function and even though there is considerable relative movement of the 

underlying firm variables”. 

 However, our interpretation is that the underlying micro-production 

functions will give constant firm-level factor shares for purely neoclassical 

reasons. It will be recalled that the firms are assumed to have Cobb-Douglas 

production functions which will give constant factor shares. Although the weights 

(the firms’ shares in total output) attached to them for aggregation may change 

over time, this does not prevent the shares from being roughly constant. Solow 

(1958) discusses why an aggregate factor share often shows less volatility than 

the individual shares that constitute it. Fisher himself does not find this 

explanation convincing (p.325, fn. 23),15 but it is hard to see what logically could 

be a more plausible explanation. Of course, it could be argued that if we are 

correct, the aggregate production function could be viewed as being a reasonable 

approximation for the underlying Cobb-Douglas technology, pace Fisher. We 

shall next turn to three simulations where this clearly is not the case.  

 

(ii)  The Evolutionary Growth Model of Nelson and Winter (1982)  

 

The next example we shall consider is the evolutionary model of Nelson and 

Winter (1982, chapter 9). While, perhaps unnecessarily, conceding that the 

neoclassical approach to growth has served to give coherence to many individual 

research projects, Nelson and Winter (1982, p.206) nevertheless consider that 

“the weakness of the theoretical structure is that it provides a grossly inadequate 

vehicle for analysing technical change”. What is particularly interesting is that 

they develop a model where individual firms have a fixed-coefficients production 
                                                 
15 Fisher argues that in his simulations “relative outputs do not seem to be very constant”, but as 
we have seen in footnote 14, this is not necessary for aggregate labour’s share to be constant if the 
number of firms exceeds 2. 
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function and, as we shall see, their underlying behaviour is far from the usual 

neoclassical assumptions of the theory of the firm. 

 Their simulation model is one where a hypothetical economy is made up 

of a number of firms producing a homogeneous good.  The technology available 

to each firm is, as we have said, one of fixed-coefficients, but with a large 

number of possible ways of producing the good given by different input 

coefficients (φL, φK) of differing efficiencies. However, the firm does not know 

the complete set of the input-output coefficients that are available to it, and so 

cannot immediately choose the best-practice technology. It only learns about the 

different techniques by engaging in a search procedure. The firms are not profit 

maximisers, but are satisficers and will only engage in such a search for a more 

efficient technique if the actual rate of profit falls below a certain satisfactory 

minimum, set at 16 percent.  

 There are two ways by which the firm may learn of other fixed-

coefficients techniques. The first is the innovation process. The firm engages in a 

localised search in the input-coefficient space. This potentially comprises the 

complete set of possible existing techniques, but the firm will be only concerned 

with a particular subset. This is because it is assumed that the probability of a 

firm identifying a new technique is a declining function of the “distance” in terms 

of efficiency between any particular new technique and the firm’s existing 

technology. Consequently, the firm only searches locally in the input-coefficient 

space near its existing technique. The “distance” between the efficiency of a 

technique h′ compared with the current technique h is a weighted average of 

and  with the weights summing to unity. Consequently, if 

the weight of is greater than 0.5, the result will be that it is more 

difficult to find a given percentage reduction in the output-capital ratio than in the 

output-labour ratio. The converse is true if the weight is less than one-half. 

)/ln( h
K

h
K

′φφ )/ln( h
L

h
L

′φφ

)/ln( h
K

h
K

′φφ

 Secondly, there is the imitation process where the firm discovers the 

existence of, and adopts, a more efficient technique because other firms are 

already using it. It is assumed that the probability of discovering this technique is 
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positively related to the share of output produced by all the firms using this 

technique. This is similar to diffusion models where a firm that is not using the 

current best-practice technique learns of it with an increasing probability as more 

and more firms adopt it. 

 The overall probability of a firm finding a new technique h′ is modelled 

as a weighted average of the probability of finding the technique by local search 

and by imitation. The exact values of the weights chosen in calibrating the model 

will determine whether the firm engages in local search or in imitation. The firm 

will adopt h' only if it gives a higher rate of profit than that obtained by the 

existing technique, but it is also possible for the firm to misjudge the input 

coefficients of an alternative technique. The model is sufficiently flexible for new 

firms to appear.  

 The wage rate is endogenously determined by labour demand and supply 

conditions in each time period. The labour supply is constructed to grow at 1.25 

per cent per annum. The prevailing wage rate affects the profitability of each 

firm, given the technique it is using. The behaviour of the industry as a whole 

also affects the wage rate. Each firm is assumed to always operate at full 

capacity, and so in effect Say’s law operates and there is no lack of effective 

demand.  

 The simulations show that the increase in wages has the effect of moving 

firms towards techniques that are relatively capital intensive. As a firm checks the 

profitability of the technique when there is an increased wage rate, it will be the 

more capital-intensive techniques that will pass the test.  While a rising wage rate 

will make all techniques less profitable, those that are labour-intensive will be 

more adversely affected. However, as Nelson and Winter (1982, p.227) point out, 

“while the explanation has a neoclassical ring, it is not based on neoclassical 

premises”. The firms are not maximizing profits. “The observed constellations of 

inputs and outputs cannot be regarded as optimal in the Paretian sense: there are 

always better techniques not being used because they have not yet been found 
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and [there are] always laggard firms using technologies less economical than 

current best practice.”  

 The model was simulated with a view to comparing the outcome with 

Solow’s (1957) results from fitting an aggregate production function to US data. 

To achieve this, the input-coefficient pairs space was derived from Solow’s 

historical data – the US non-farm private business sector from 1909 to 1949. The 

simulation results produce industry data very similar to Solow’s historical data. 

Indeed, if aggregate Cobb-Douglas production functions are fitted to Nelson and 

Winter’s generated data, very good fits are obtained with the R2s often over 0.99 

and the estimated aggregate “output elasticity with respect to capital” (which, in 

fact, does not exist) often close to capital’s share, although there are one or two 

exceptions.  As Nelson and Winter (1982, p. 226) observe, “the fact that there is 

no production function in the simulated economy is clearly no barrier to a high 

degree of success in using such a function to describe the aggregate series it 

generates.”   

  For our purposes, it is worth emphasizing that the simulated 

macroeconomic data suggests an economy characterized by factors being paid 

their marginal products and an elasticity of substitution of unity, even though we 

know that every firm is subject to a fixed-coefficients technology.16  The reason 

why the good fit to the Cobb-Douglas production function is found is once again 

because the factor shares produced by the simulation are relatively constant. 

Nelson and Winter (1982, p.227) summarise their findings as follows: 

 
On our reading, at least, the neoclassical interpretation of long–run 
productivity change is sharply different from our own. It is based on a 
clean distinction between “moving along” an existing production 
function and shifting to a new one. In the evolutionary theory, 
substitution of the “search and selection” metaphor for the maximization 
and equilibrium metaphor, plus the assumption of the basic 
improvability of procedures, blurs the notion of a production function. 
In the simulation model discussed above, there was no production 

                                                 
16 Houthakker (1955-56) shows that if firms have a fixed-coefficients technology and firm size is 
distributed as a Pareto distribution, then the aggregate production function will be a Cobb-
Douglas with diminishing returns to scale. 
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function – only a set of physically possible activities. The production 
function did not emerge from that set because it was not assumed that a 
particular subset of the possible techniques would be “known” at each 
particular time. The exploration of the set was treated as a historical, 
incremental process in which nonmarket information flows among firms 
played a major role and in which firms really “know” only one 
technique at a time.  
 

(iii) Shaikh’s (2005) Non-Linear Goodwin Growth Model and the Cobb-Douglas 

Production Function 

 

Shaikh (2005) provides further evidence of the difficulty of estimating an 

aggregate production function by elaborating on his 1987 entry in the New 

Palgrave. He generates hypothetical data by simulating a slightly modified 

version of the Goodwin (1967) growth model, which is based on a fixed-

coefficients production function with Harrod-neutral technical change. However, 

as the data set has the property that factor shares are roughly constant, not 

surprisingly, he is able, eventually, with a judicious choice of a time path for 

technical change, to show that the Cobb-Douglas production function gives an 

excellent fit to the data. The regressions using the hypothetical data are also 

contrasted with those using actual data for the US economy over the postwar 

period. (The latter are from the Bureau of Economic Analysis’s National Income 

and Product Accounts and associated wealth stocks.) 

 The simulation model may be described as follows. The level of output is 

given by a fixed –coefficients production function: 
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     (20) 

 

where . Consequently, over time, the amount of labour required to 

produce a given volume of output falls at the rate λ, or, what comes to the same 

thing, labour productivity increases at the rate λ, which is taken to be 2 per cent 

t
0LL e)t( λφφ −=
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per annum. Thus, machines of more recent vintages require less labour, but the 

same amount of capital, as earlier machines. The capital coefficient (φK), 

however, is constant over time, so technical change is labour augmenting. It 

follows from the conditions of production that  and  and as  is 

assumed to grow at 2 per cent per annum, output and capital grow in equilibrium 

at 4 per cent (recalling that λ equals 2 per cent). This assumes that the economy is 

moving along its warranted path. Thus, we have two of Kaldor’s stylised facts, 

namely, a constant growth of labour productivity and a constant capital-output 

ratio.    

λ=− L̂V̂ 0ĴV̂ =− L̂

 Shaikh constructs a hypothetical data set generated by the Goodwin 

model. The growth of the real wage rate is determined by the employment ratio 

(the ratio of employment to the labour force) and labour’s share and has nothing 

to do with the technical conditions of production (as in the marginal productivity 

theory of factor pricing). A property of the production function is that a change in 

the wage rate will not affect the choice of technique; all it will do is alter the 

distribution of income. The fact that we are dealing with a fixed-coefficients 

technology means that the marginal products cannot be defined. As Shaikh (2005, 

p. 451, italics in the original) emphasises, “it follows that the technological 

structure of this control group [Goodwin] model is entirely distinct from that of 

neoclassical production theory and associated marginal productivity rules”.  

 In steady-state growth, the parameters of the real wage growth function 

are such that the growth of the real wage is 2 per cent per annum, i.e., equal to the 

growth of labour productivity and this means that labour’s (and, hence, capital’s 

share) is constant. The model is stable in that after a shock, the growth of output 

converges to 4 percent per annum and labour’s share to a constant (approximately 

0.84) and the employment ratio to a steady 95 per cent. Consequently, the 

simulated data series, like the actual US data, have factor shares that do not vary 

greatly over time. Nevertheless when a Cobb-Douglas is estimated with a linear 

time trend (in the log-level specification) or with a constant intercept (in the 

growth rate form), the results are poor regardless of whether the simulated or the 
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actual US data are used and whether the Cobb-Douglas is freely estimated or has 

constant returns to scale imposed on the coefficients. 

 The reason is that notwithstanding the constancy of the factor shares, if 

the growth of the weighted wage rate and profit rate is not sufficiently constant, 

this can lead to poorly determined and biased coefficients of the factor inputs.   In 

fact, both data sets show a pronounced fluctuation in the rate of profit, which has 

generally been found to be the main cause of other poor fits of the Cobb-Douglas 

(the wage rate is not so volatile around its trend). Shaikh notes that the Solow 

Residual is nothing other than the weighted average of the growth of the wage 

rate and the rate of profit, so that and, if factor shares are 

constant, . Consequently, the only difference between the Cobb-

Douglas and the identity is the restriction usually imposed on the Cobb-Douglas 

that the weighted growth of the wage rate and rate of profit is a linear function of 

time with a random error term. (If shares are not exactly constant over time, then 

this will provide another difference.) But even in the neoclassical schema, there is 

no reason why this should be the case. The actual time path of At can be 

approximated to any required degree of precision by a complex time trend such 

as a Fourier series. Shaikh further notes that if one wishes to use a smooth path of 

technical change, then it is always possible to construct a series  = where, if 

ψ < 1, this dampens, or smoothes, the fluctuations.

tttt ŵ)a(r̂aÂ −+= 1
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17 Defining  as 

 and taking ψ as either 0.2 or 0.6, Shaikh, not surprisingly, gets 

a very good fit to the data with the estimated coefficients of the inputs almost 

precisely the same as the factor shares. 

tÂ

)L̂V̂( tt −−

 

 

 

                                                 
17 Shaikh uses the notation Ft instead of  and also allows its mean to differ from that of . tF̂ tÂ
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(iv) Felipe and McCombie’s (2006 ) Simulations: ‘The Tyranny of the Accounting 

Identity’ 

 

Fisher (1971, p.325) concluded his paper with the remarks, which could equally 

be the conclusions of the other two simulation studies, that “the suggestion is 

clear, however, that labor’s share is not roughly constant because the diverse 

technical relationships of modern economies are truly representable by an 

aggregate Cobb-Douglas but rather that such relationships appear to be 

representable by an aggregate Cobb-Douglas because labor’s share happens to be 

roughly constant. If this is so, then the reason for such constancy becomes an 

important subject for further research” (emphasis in the original).  

 This was one of the starting points of Felipe and McCombie’s (2006)18 

simulations. A major difference between their explanation and the others is that 

Felipe and McCombie draw an explicit and important distinction between a 

micro-production function, which is an engineering relationship, with output and 

capital measured in physical terms and the aggregate production function where 

they are measured in constant-price monetary terms. Consequently, some set of 

base-year prices has to be used to construct a constant-price monetary measure of 

output  and capital to allow aggregation.   

 Felipe and McCombie adopted an approach different from those discussed 

above, in that they constructed two types of data for the firm. They postulated 

that there were well-defined firm micro-production functions, with output and the 

capital stock specified in physical terms, as ideally they should be. These micro-

production functions were Cobb-Douglas, but the output elasticity of capital was 

deliberately chosen to be 0.75 and of labour, 0.25. This stands in marked contrast 

to the usual values found of 0.25 and 0.75, respectively. Then they constructed 

constant-price data for output for firm i using a mark-up pricing model: 

 

iii Q/wL)1(p μ+=     (21) 

                                                 
18 See also McCombie (2001). 
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where p is the price (£ per unit output), μ is the mark-up, taken as 0.333, and w is 

the exogenously given money wage rate which was assumed to be the same for 

each firm. The profit rate r took a value of 0.10 for each firm. The value of the 

capital stock was calculated residually through the accounting identity 

as , where Vi is value added, constructed as r/)wLV(J iii −≡ iii QpV =   by using 

equation (21) for each firm. The values of the factor shares are directly calculated 

using these value data. Labor’s share is calculated as )V/wL ii(ai =  and capital’s 

share as . It should also be noted that)a1( i− )1/(1ai μ+= , and so it takes a value 

of 0.75 for each firm, with a small variation due to an added random variable to 

prevent perfect multicollinearity. The researcher is assumed to know only the 

value data, i.e. V and J and not Q and K. Using these data and running a cross-

firm regression gives:19 

 

 lnV    =    2.867  +  0.250lnJ+ 0.750lnL  99902 .R =   
            (478.77)   (45.41)    (136.40)                   s.e.r. = 0.0025 
 
 
 Consequently, it can be seen that the estimated output elasticity of labour 

is 0.75 (and not the ‘true’ value of 0.25) and of capital is 0.25 (and not 0.75). 

 Indeed, it is the constant mark-up that is solely responsible for generating 

the very good fit to the “spurious” Cobb-Douglas. To demonstrate this, the 

physical values of the three series Q, L and K were next generated as random 

numbers. V and J were calculated as before. Nevertheless, the estimation yielded 

a very good fit to the Cobb-Douglas with the values of the “output elasticities” 

the same as before. This does not necessarily mean that Felipe and McCombie 

are postulating that output is actually a random function of factor inputs. 

However, when one considers the complex production processes of any modern 

firm, there may be some individual parts of the process subject to fixed 

                                                 
19 The goodness of fit is determined by the random variable introduced into the construction of the 
value data to prevent perfect multicollinearity. 
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coefficients, whereas others are subject to differing elasticities of substitution, to 

say nothing of differences between plants in managerial and technical 

efficiencies. Thus, the “randomness” may simply be a reflection of the severe 

misspecification error inherent in specifying the micro-production function as a 

Cobb-Douglas. But the important point to note is that even in this case, where 

there is no well defined micro-production function, the use value-added data will 

give the impression that there exists a well-behaved aggregate Cobb-Douglas 

production function. 

 When the true micro-production functions exhibit strong increasing 

returns (the degree of homogeneity was set equal to 1.20), but the value of the 

mark-up is the same as before, estimating the unrestricted Cobb-Douglas 

production function gives a result that is virtually identical to that for constant 

returns to scale, and reported above, except for a change in the value of the 

intercept. This shows that even when there are increasing returns to scale at the 

micro level, using value data will mean that this is captured in the “level of 

technology” of the aggregate production function and estimates of the latter will 

suggest constant returns to scale. 

 Felipe and McCombie also used these hypothetical data to calculate the 

growth of total factor productivity (or the size of the Solow residual) for an 

industry which consisted of ten firms. It was assumed that each firm experiences 

the same rate of technical progress of 0.5 per cent per annum. The output 

elasticities in physical terms were the same as before, as was the mark-up.   

 As the rate of technical progress was the same for each firm, we can talk 

about the rate of technical progress being 0.5 per cent per annum; even in the 

case where we assume that the physical outputs of the various firms are not 

homogeneous. The values of the individual firm’s value added, constant price 

capital stock and employment were summed to give the industry values. 

 However, it was again assumed that all that can be used in empirical 

work, as is usually true in practice, is the constant-price value of output and of the 

capital stock. The growth of total factor productivity is given by: 
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       (22) Ĵ)a(L̂aV̂TFPG −−−≡ 1

 

where now the shares of capital and labour are 0.75 and 0.25, respectively. 

 The rate of total factor productivity growth obtained by using the 

aggregated value data of the 10 firms and equation (22) came to 1.48 per cent per 

annum. The reason for the marked difference between these values and the “true” 

rate of technical progress of 0.5 per cent per annum is that labour’s share of 

output in value terms is 0.75, while the “true” output elasticity of the firms’ 

production functions is 0.25.  Consequently, the true rate of technical progress 

cannot be determined using constant-price monetary values, as is the universal 

practice. 

 

CONCLUSIONS 
   

Fisher (1971, p.305) noted that Solow once remarked to him that, “had Douglas 

found labor’s share to be 25 per cent and capital’s 75 per cent instead of the other 

way around, we would not now be discussing aggregate production functions”.  

In this paper, we have shown that Douglas, by using monetary values in his 

estimations of the aggregate production function could not have failed to have 

found this result. Indeed, with knowledge of Kaldor’s stylized facts and the 

accounting identity linking total value added to the sum of wages and profits, we 

can predict the results of estimating various production functions before a single 

regression has been run. This has been shown, for example, by Felipe and 

McCombie (2005b) in the case of Mankiw, Romer and Weil’s (1992) well-

known study, which actually tells us nothing we did not already know.  It 

certainly cannot be interpreted as a test of the factors that determine economic 

growth or of the augmented Solow model. 

 Our nihilistic conclusion is that because theoretically the aggregate 

production function does not exist, and empirically it cannot be meaningfully 
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estimated, it can shed no light on how real economies work. Consequently, 

neoclassical growth theory, which relies on the aggregate production function, 

can shed little, if any light, on “why growth rates differ”. We have also shown in 

section (iv) above how the concept of total factor productivity growth (or 

multifactor productivity growth as it is sometimes called) is equally flawed, even 

though it is now widely used by such bodies as the OECD as a well-established 

and accepted measure of productivity growth. 
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