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Abstract: This paper presents some new estimates of the degree of returns to scale for 
European regional manufacturing, for the period 1986-2002.  To obtain these estimates, the 
paper makes use of a Verdoorn law framework, estimating both demand- and supply-side 
versions of the law.  Estimation is further embedded within a spatial econometric framework 
that allows for both "substantive" and "nuisance" sources of spatial autocorrelation.  The former 
arises from cross-regional spillovers in the growth process, whilst the latter is a result of the use 
of the administrative NUTS1 definition of regions.  Whilst the demand-side version of the 
Verdoorn law yields estimates of substantial increasing returns, the supply-side version is 
unable to refute the hypothesis of constant returns.  It is argued, however, that the demand-side 
version is to be preferred on a priori grounds.  The paper also gives consideration to the static-
dynamic Verdoorn law paradox and successfully tests a recently proposed explanation of this 
paradox. 
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1. Introduction 

 

There is been a strong tradition in regional economics that has long emphasised the importance 

of localised increasing returns to explaining regional processes of growth and agglomeration 

(Kaldor, 1970; Dixon and Thirlwall, 1975; Krugman, 1991; Glaeser et al, 1992).  However, this 

tradition has been far from dominant down the years, and, in particular, can be contrasted with a 

literature that has, instead, routinely assumed constant returns to scale (Borts and Stein, 1964; 

Barro and Sala-i-Martin, 1991, 1992, 2004).  This lack of theoretical consensus has, 

furthermore, been mirrored in empirical work that, either directly or indirectly, has been 

concerned with testing for the existence of localised increasing returns.  Thus, early studies 

estimating regional production functions report evidence of either constant or very small 

increasing returns to scale (Moroney, 1972; Griliches and Ringstad, 1971; Douglas, 1976).  

Likewise, widespread findings of absolute convergence between regions are normally 

interpreted within a constant returns to scale framework (Barro and Sala-i-Martin, 1991, 1992, 

2004).  In contrast, however, recent cross-country evidence suggests that there are significant 

domestic scale effects, once the degree of international openness is controlled for (Frankel and 

Romer, 1999, and Alcalá and Ciccone, 2004). Also, importantly, estimation of the so-called 

Verdoorn law - the relationship between productivity growth and output growth - has 

consistently provided evidence of substantial localised increasing returns for a wide variety of 

samples and time-periods (McCombie and de Ridder, 1984; Bernat, 1996; Fingleton and 

McCombie, 1998; León-Ledesma, 1999; Pons-Novell and Viladecans-Marshal, 1999). 

 

In light of the above, this paper re-examines the question of the degree of localised increasing 

returns for European regional manufacturing.  Using data for the period 1986-2002, it provides 

some new estimates of the degree of localised returns for a sample of 59 European NUTS1 

regions.1 To obtain these estimates, the paper makes use of a Verdoorn law framework similar 

to that employed in the literature referred to above.  However, in contrast to previous studies 

using comparable data (Fingleton and McCombie, 1998; Pons-Novell and Viladecans-Marshal, 

1999), it estimates not only the usual demand-side version of the law, but also a supply-side 

version.  Whilst the demand-side version sees causation as running from the growth of demand 

for local products and output to the growth of productivity, the supply-side version sees it as 

running from the growth of local factor supplies to the growth of productivity (Rowthorn, 

1975).  As will be seen, the two versions of the law give considerably different estimates of the 

                                                      
1 The sample was determined by the availability of data for gross investment. 

 2



 

degree of local returns.  Furthermore, attempting to control for the endogeneity that might be 

present in both versions fails to reconcile the divergent estimates.  This is because of the 

different methods of normalisation involved in the process of instrumenting.  Given this, we are 

left with no choice but to fall back on a priori theoretical arguments about which version of the 

law is to be preferred (Maddala, 1992, p. 380).  In this context, we argue strongly in favour of 

the estimates obtained from the demand-side version. 

 

As well as estimating both demand- and supply-side versions of the Verdoorn law, the paper 

extends previous studies using comparable data in several respects.  First, it estimates the law 

using total factor productivity (TFP) growth, rather than labour productivity growth, as the 

dependent variable.  It, therefore, explicitly controls for labour productivity growth that is 

attributable to capital accumulation, rather than to the exploitation of localised sources of 

increasing returns.   

 

Secondly, the paper augments the law to allow for the possibility that both technological 

diffusion and agglomeration economies act as independent sources of local productivity growth.  

This is important given the emphasis placed on these factors elsewhere in the regional 

economics literature (see, inter alios, McCombie, 1982a; Baldwin and Martin, 2004).   

 

Thirdly, the estimation of the law is embedded within a spatial econometric framework which, 

unlike previous studies, allows for both "substantive" and "nuisance" sources of spatial 

autocorrelation.  The former may arise due to the potential for cross-regional spillover effects in 

the regional growth process.  These include, for example, the possibility that fast output growth 

in one region not only helps to stimulate TFP growth in that region, but, through knowledge 

spillovers, also in neighbouring regions. Meanwhile, the latter may occur due to the fact that the 

definition of NUTS regions is based upon administrative boundaries rather than on any set of 

functional criteria (Roberts and Setterfield, 2006).  This makes nuisance spatial autocorrelation 

in the form of spatial measurement error a likely feature of the data set (Anselin, 2006, p 907).  

We refer to the spatial econometric framework that we use as the "spatial hybrid model".  This 

model represents an extension of the spatial cross-regressive model to include an error term that 

follows a first-order spatial autoregressive process.  

 

Finally, the paper revisits the "static-dynamic Verdoorn law paradox" of McCombie (1982b).  

This paradox arises from the fact that it has typically been found that when the demand-side 

version of the Verdoorn law is estimated in static (i.e. log-level) form, constant returns to scale 
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are found to exist.  This is despite the fact that, for the same dataset, estimation of the 

corresponding dynamic relationship (i.e. the law in the usual growth rate form) indicates the 

presence of substantial increasing returns to scale.  Since the dynamic law can be derived 

directly from the static law by differentiating with respect to time, however, both versions of the 

law should, in principle, give identical estimates of the degree of localised returns to scale.  The 

paper confirms the existence of the static-dynamic paradox for the current dataset and tests a 

recently proposed explanation for the paradox attributable to McCombie and Roberts (2007). 

 

2. The Verdoorn law - theoretical framework, controversy and the paradox 

 

2.1. The Verdoorn law and its theoretical framework 

 

The origins of the Verdoorn law may be traced back to Verdoorn (1949).  Traditionally, the law 

has been estimated as a linear relationship between labour productivity growth and output 

growth (see McCombie et al., 2002): 

 

  pj = c1 + b1qj    (1) 

 

where pj and qj are the growth rates of manufacturing labour productivity and output 

respectively of region j, usually calculated over periods of about a decade.  The coefficient b1 is 

the Verdoorn coefficient, and it traditionally takes a value of around 0.5, which has been 

interpreted as implying substantial increasing returns to scale.2 If the estimated coefficient of b1 

is not significantly different from zero, this implies constant returns to scale. 

 

Significantly absent from the above specification of the Verdoorn law, however, is the growth 

of the capital stock (McCombie and de Ridder, 1984). Previous studies of the law pertaining to 

the European regions (Fingleton and McCombie, 1998; Pons-Novell and Viladecans-Marsal, 

1999) do not include this variable. Instead, they rely on Kaldor’s (1961) stylised fact that the 

capital-output ratio is constant. (See footnote 5 below.) Relaxing this assumption, however, 

suggests an extended version of the law.  To see this, note that the Verdoorn law can be derived 

from a Cobb-Douglas production function of the form: 

                                                      
2 See, for example, Fingleton and McCombie (1998) and Pons-Novell and Viladecans-Marsal 
(1999) who obtain estimates of 0.575 and 0.628 respectively for their samples of European 
regions.  For a survey of Verdoorn law studies covering a wide variety of samples see 
McCombie et al. (2002). 
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where Q, K, and L are the levels of output, capital, and labour respectively.  λ is the rate of 

technological progress.  a and (1-a) are production function parameters and, under the usual 

neoclassical assumptions, they equal the relevant factor shares.3

 

A key assumption of the Verdoorn law is that λ is largely endogenously determined. This can 

occur, for example, through localised knowledge spillovers emanating from learning-by-doing 

or induced technological change (Arrow, 1962, Kaldor, 1957).  To capture these effects, we 

specify λ as:  

 

( ) ]1[~
jjj aak l−++= πλλ    (3) 

 

 

where the lower case letters k and l denote exponential growth rates of the corresponding upper 

case variables. is the rate of exogenous technological progress and π is the elasticity of 

induced technological progress with respect to the weighted growth of inputs.  Both and π are 

assumed to be constant across regions.  

λ~

λ~

 

Substituting equation (3) into equation (2) gives: 

 

      (4) βαλ
jtjt

v/t~

0jt LKeAQ =

 

where α and β are the observed output elasticities of capital and labour respectively; and α 

=(1+π)a = va  and β =(1+π)(1-a) = v(1-a), where v is the degree of local returns to scale. It 

should be noted that as a and (1-a) differ between regions and over time, so do α and β, but not 

their sum, v.  This is because αj + βj=  vaj + v(1-aj) = v (where the regional subscripts, j, have 

been added for clarity). Note, moreover, that v is more encompassing that the traditional 

definition of returns to scale.  That is to say, it is a composite measure of returns to scale that 

                                                      
3 In the data, the values of the factor shares differ somewhat both between regions and over 
time.  For expositional purposes, however, we shall treat them here as constant. 
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also includes the effect of the induced rate of technological change, namely, π[akj + (1-a)lj].  

Consequently, taking logarithms of equation (4), differentiating with respect to time, and 

rearranging gives:  
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2.2 Augmenting the Verdoorn Law 

 

Recently, data on gross investment has become available for the European regions, thereby 

allowing for the construction of a measure of k.  In this context, OLS estimation of equation (5) 

seems inappropriate because it is likely that k is endogenous, being largely determined by the 

growth of output (Kaldor, 1970).  To tackle this, equation (5) can be respecified as: 

 

  jj q
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v
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λ
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where tfpj = qj – a kj – (1-a)lj  is the growth rate of total factor productivity. Empirically, a is 

equal to capital’s share of total output.  In this paper, we calculate this separately for each region 

as 0.5(aT + a0), where T and 0 denote the terminal and initial years of the period respectively.  

Equation (6) has the advantage that the (Verdoorn) coefficient of q is constant unlike in 

equation (5) where, as we have noted, empirically α and β vary to some extent over time and 

regions, but v does not. It is for this reason and the endogeneity of k that we prefer to work with 

equation (6).  

 

However, one problem with equation (6) is that it attributes all of the cross-sectional variation in 

TFP growth to regional variations in output growth.  Yet, part of the variation in tfpj could 

equally be due to the diffusion of innovations from high-technology to low-technology regions 

(McCombie, 1982a; Barro and Sala-i-Martin, 2004, Chapter 8). Likewise, it has been suggested 

in the regional economics literature that the density of production within a region might be a 

source of dynamic agglomeration economies and, therefore, increasing returns (Baldwin and 
                                                      
4 In the absence of data on the growth of capital, if the stylised fact that k = q is invoked, and if 
α = β, i.e., the output elasticities of labour and capital are the same in manufacturing, a 
Verdoorn coefficient of 0.5 implies local returns to scale of 1.33. 
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Martin, 2004).  It therefore follows that cross-regional variations in the density of production 

might also help to explain the variation in tfpj. 

 

To capture the above possibilities, the Verdoorn law can be further augmented as follows: 
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where lnTFPj0  is the log of the initial level of TFP for region j and is intended as a proxy for the 

initial level of technology.  According to the diffusion hypothesis, θ1  < 0 should be expected to 

hold.5  lnDj0 is the logarithm of region j’s output density (Dj0), where Dj0 = Q j0/Hj  with Hj being 

the area of region j in square kilometres. By taking the relevant measure of output density to be 

the initial output density, expected problems of endogeneity are minimised.6  

 

Equation (7) implies that the density of production within region j has an effect on its growth 

path, and, because it is specified as a relationship between TFP growth and output growth, we 

term equation (7) the dynamic Verdoorn law.7  An alternative is to specify lnDj0  as only having 

a “level effect” (Ciccone and Hall, 1996; Ciccone, 2002).  In this case, lnDj0 only affects the 

level, and not the long-run growth rate, of TFP.  This does not, however, affect the specification 

of the Verdoorn law given by equation (6), merely its interpretation. In fact, in this case, it is not 

possible to directly test for the independent influence of agglomeration economies arising from 

the density of production.  To see this, assume that the functional form underlying the Verdoorn 

law is now provided by: 
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5 Fingleton and McCombie (1998) also attempt to proxy for the initial level of technology.  
However, given their lack of capital stock estimates, they make use of the initial level of labour 
productivity.  This is less satisfactory than using the initial level of TFP, because variations in 
labour productivity will also be attributable to variations in the capital-labour ratio. 
6 Using the average density of production over the sample-period, however, made little 
difference to the results obtained. 
7 Integrating equation (7) with respect to time gives a complex function that is not a Cobb-
Douglas involving ∫ Xdtln ,  where X is either TFP or D. Consequently, it is not possible to 

estimate the equivalent static form of equation (7).  
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In this case, the Verdoorn law in log-level form (i.e. the static Verdoorn law) at any time t is 

given by: 
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Hence, under increasing returns to scale (1 - 1/v) > 0, the greater the density of production is 

(i.e., the lower is lnHj in equation (9) for any given lnQj), the higher the level of TFP will be.  

With constant returns to scale, though, the density of production has no effect.  

As the area of the region, Hj, is constant over time, the Verdoorn law given by equation (9) is 

the same as in equation (6), when expressed in growth rate (i.e., dynamic) form. Hence, when 

the underlying production function is provided by equation (8), estimation of the dynamic 

Verdoorn law does not allow the separate influence of agglomeration economies to be 

disentangled from that of increasing returns, interpreted more generally. This may be perhaps 

more easily understood by substituting Hj = Djt /Qjt into equation (9), which, after some 

rearrangement, becomes: 

               jttjt Dln11AlnTFPln ⎟
⎠
⎞

⎜
⎝
⎛ −+=

ν
   (10) 

Expressing equation (10) in growth rates also gives equation (6) as dlnDjt/dt = qj. 

 

2.3. Endogeneity and the appropriate specification of the Verdoorn law 

 

The specification of the augmented dynamic Verdoorn law in equation (7) holds true to the 

origins of the law.  Thus, qj is specified as an exogenous and independent determinant of tfpj, so 

that demand growth is seen as the fundamental driving force behind the processes of regional 

growth and agglomeration (Kaldor, 1970; Dixon and Thirlwall, 1975).  However, the traditional 

neoclassical model of growth (Solow, 1956; Swan, 1956) generally assumes that the growth of 

                                                      
8 For expositional ease, any possible effect of technological diffusion is ignored. 
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factors are exogenous, which, in the case of the simple dynamic Verdoorn law given in equation 

(1), implies that the specification should be pj = c2 + b2lj, where lj is the growth of employment 

in region j. We shall henceforth term this the “supply-side specification” of the Verdoorn Law 

in contrast to the “demand-side specification” that we have so far focused on.  In terms of our 

augmented dynamic Verdoorn law, this is equivalent to respecifying equation (7) as: 

 

( ) 0202 lnln1
~

jjjj DTFPtfi
v

tfp ζθνλ
++−+=   (11) 

 

where tfij =  a kj + (1-a)lj  denotes the weighted growth of total factor inputs in region j. 

 

Early estimations using cross-country data for the advanced countries found that the two simple 

specifications of the Verdoorn law pj = c1 + b1qj and pj = c2 + b2lj gave very different implied 

estimates of the degree of returns to scale. The demand-side specification found substantial 

increasing returns to scale with 1b̂ ≈ 0.5 (Kaldor, 1966, 1975). In contrast, the supply-side 

specification with lj as the regressor indicated constant returns to scale, with it not being 

possible to reject the hypothesis b2 = 0 (Rowthorn, 1975). 

 

The reason for the divergence in the implied estimates of ν in the two versions of the law can, 

however, be easily understood.  It occurs because the relationship between the two OLS slope 

coefficients in the demand- and supply-side specifications of the dynamic Verdoorn law is given 

by = R)b1)(b1( 21 +− ˆˆ ˆ2 (see Maddala, 1992, p. 72). Given that most studies have found  = 

0.5 (implying, as we have seen, increasing returns) and that, in cross-sectional data, the R

1b
2 

usually presents a reasonably good fit of 0.5, it follows that )b̂1( 2+  ≈ 1 and   (implying 

constant returns to scale) (McCombie et al., 2002).  

02 =b̂

 

It should be noted, however, that neither the growth of output nor of factor inputs may be 

strictly exogenous. To the extent that the Verdoorn law is a production relationship, causation 

will run from the growth of factor inputs to output growth, i.e., from the supply-side of the 

economy to the demand-side.  By contrast, the demand-side origins of the Verdoorn law suggest 

the opposite direction of causation.  However, even here, it is appropriate to acknowledge that, 
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given that the regional growth and agglomeration processes are circular and cumulative, 

positive feedback will exist from productivity growth to output growth (Kaldor, 1970; Dixon 

and Thirlwall, 1975).  This being the case, the use of OLS to estimate either equation (7) or 

equation (11) will be subject to simultaneity bias.  Consequently, an appropriate estimator that 

allows for endogeneity should be used and, ideally, this should help to bring about a 

convergence of the estimates of ν obtained from the two specifications. 

 

2.4. The static-dynamic Verdoorn law paradox 

 

Equations (7) and (9) are what we have referred to as the dynamic and static Verdoorn laws 

respectively.  In particular, ignoring both the possibility of technological diffusion and 

agglomeration economies arising from the density of production, the dynamic Verdoorn law can 

be derived from its static counterpart by differentiating with respect to time.  This being the 

case, it might be expected that the estimation of the following two equations would give 

identical estimates of ν: 
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where equation (12) is estimated using cross-regional growth rates and equation (13) is 

estimated using, say, the same data at the initial and terminal years of the period, with an 

appropriate year intercept dummy to capture possible exogenous shifts in the relationship over 

time.  

 

However, previous studies, including those for the European regions (Fingleton and McCombie, 

1998) have reported substantially different estimates of v for the two models.9  In particular, it 

has been found that whereas dynamic specifications of the Verdoorn law give estimates of ν that 

are significantly greater than unity, static specifications do not.  A possible explanation for this 

“static-dynamic paradox” (McCombie, 1982b) is provided by McCombie and Roberts (2007) in 

terms of spatial aggregation bias.  They argue that the ideal spatial unit of observation is not the 

                                                      
9 Note, however, that Fingleton and McCombie (1998) do not estimate versions of the Verdoorn 
law that allow for capital accumulation. 
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administrative region (of which the NUTS1 regions used in this paper are examples), but the 

“Functional Economic Area” (FEA). The FEA is the area over which substantial agglomeration 

economies occur and is likely to be determined by various factors, such as journey to work 

patterns.  McCombie and Roberts (2007) suggest that any particular region is likely to consist of 

a number of FEAs, with larger regions containing more than smaller ones. The spatial 

aggregation error occurs because the data for each region are the values of output, employment, 

and capital for each constituent FEA summed arithmetically. This potentially biases downwards 

(the static) estimates of ν obtained from equation (13).  However, because growth rates are 

dimensionless figures, estimation of the dynamic Verdoorn law avoids this bias.  Hence, the 

dynamic Verdoorn law (i.e., equation (12)) is the preferred specification.  

 

Anticipating the econometric results, we find that the static-dynamic Verdoorn law paradox  

holds for the data set in this paper  It is interesting, therefore, to test the spatial aggregation bias 

explanation of McCombie and Roberts (2007). The paradox, moreover, raises problems 

concerning the appropriate measure of the level of TFP to use as a proxy for the level of 

technology in equation (7). Clearly, if there are significant localised increasing returns, then 

TFP levels could differ because of this factor and so the measure of TFP should be adjusted 

accordingly. If McCombie and Roberts (2007) are correct then the index of TFP should be 

adjusted to be: 
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where f denotes the FEA, j the region and ωf is an appropriate weight for FEA f.10  Calculation 

of this corrected index, however, requires data for the individual FEAs, which is not available. 

Consequently, the procedure adopted below is to use two alternative proxies for TFPj0. First, the 

initial level of aggregate TFP was calculated under the assumption of constant returns to scale, 

namely, . Secondly, the initial level of TFP was calculated under the 

assumption that the returns to scale apply to the whole of region j’s output, namely, 

)a1(
0j

a
0j0j0j LK/QTFP −=

 
10 Such as ωfj0 =  or  .  0fj
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βα
0j0j0j

*
0j LK/QTFP =  where α and β are the estimates implicit in the estimated Verdoorn 

coefficient. These two measures of TFP provide the limits of the true measure of TFP.  

 

3.  Spatial econometric issues 

 

Florax and Folmer (1992) consider the following general functional form for a spatial cross-

section regression:  

 

   y = Xδ +ηWy + WXρ  + ξWε + μ    (15) 

  

where y is a vector of observations on the dependent variable,  X is a matrix of non-stochastic 

regressors, δ the associated vector of coefficients. W is an a priori specified matrix of 

exogenous weights. η is the spatial autoregressive parameter, ρ is a vector of cross-correlation 

coefficients, Wε is the spatially lagged error term and μ is a vector of random errors with E(μ) 

=0 and E(μμ′) = I.  From this general specification, at least five restricted specifications can 

be identified. 

2
μσ

 

(i) Ordinary least squares (OLS) is appropriate when the constraints η = 0,  ρ = (0,….0)′  and ξ 

= 0 hold, in which case y = Xδ + μ.. This is the correct specification when there is no spatial 

autocorrelation. 

 

(ii) The spatial autoregressive or spatial lag model (SAR) is used when the constraints ρ = 

(0,…,0)′  and ξ = 0 hold so that y = Xδ +ηWy + μ. Thus, the spatial autocorrelation is captured 

by the spatially lagged dependent variable. 

 

(iii) The spatial error model (SEM) results when η = 0 and ρ =( 0…0)′  and is given by y = Xδ 

+ξWε + μ.  Here, spatial autocorrelation is assumed to be a nuisance and taken account of by 

the spatially lagged error term.    

 

The SAR and SEM representations are the most commonly applied in spatial econometric 

studies (Anselin, 2006, p 904). These specifications have been interpreted as capturing spatial 

autocorrelation of the "substantive" and "nuisance" variety respectively.  Thus, while η in the 

SAR model has been given the economic interpretation of capturing the strength of cross-
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regional spillovers (Anselin, 2006, p 905; Pons-Novell and Viladecans-Marsal, 1999, p. 446), ξ 

in the SEM model has been seen as controlling for measurement errors arising, for example, 

from non-functional definitions of regional boundaries (Roberts, 2004, p 156) and/or the 

presence of common regional shocks (Anselin, 2006, p 907).  The standard specification search 

strategy tests-up from the OLS specification to either the SAR or the SEM model through the 

comparison of two Lagrange Multiplier (LM) tests.  These tests are the LMSAR and LMSEM tests.  

Whilst the former exhibits greater power against the SAR model, the latter demonstrates greater 

power against the SEM.  On the basis of this, the strategy is to choose between the SAR and 

SEM models on the grounds of which has the largest associated LM statistic.  This is unless 

both test statistics are insignificant, in which case the OLS specification is preferred (Anselin 

and Rey, 1991; Florax et al, 2003).  However, given that the SAR and SEM models are both 

nested within the general model given by equation (15), it follows that this standard strategy is 

only powerful when either LMSAR or LMSEM indicate significant spatial autocorrelation. 

Furthermore, recent Monte Carlo work suggests that the standard specification search strategy 

can easily result in misleading inferences being drawn in the presence of both nuisance and 

substantive forms of spatial autocorrelation (Roberts, 2006).11  

 

 (v) The spatial cross-regressive model (SCM) is used when the restrictions η = 0 and ξ = 0 are 

imposed so that y = Xδ  +  WXρ  + μ.  Like the SAR model, this model captures substantive 

spatial autocorrelation.  However, it does so through the inclusion of spatial lags of the 

independent variables, rather than the spatial lag of the dependent variable.  In the case of the 

augmented dynamic Verdoorn law given by equation (7), this is equivalent to the inclusion of 

Wq, WlnTFP0 and WlnD0 as additional explanatory variables.  These additional variables can be 

interpreted as capturing cross-regional spillovers to region j occurring and/or being affected by 

output growth, technology levels and levels of agglomeration in neighbouring regions.  This 

would contrast with estimation of the augmented dynamic Verdoorn law using the SAR model, 

which would instead see spillovers as occurring directly through TFP growth.  In this sense, the 

SCM would seem preferable because it enables the analyst to identify and estimate the separate 

                                                      
11 Sometimes, the standard specification search strategy is replaced by a procedure based upon 
robust versions of the LMSAR and LMSEM tests attributable to Anselin et al (1996).  However, 
this robust version of the strategy can, just like the standard version, result in misleading 
inferences in the presence of both substantive and nuisance forms of spatial autocorrelation 
(Roberts, 2006). 
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contributions of the different independent variables to cross-regional spillovers.12 This allows, 

for instance, for testing of the hypothesis that faster TFP growth is more likely to be observed in 

region j if that region is surrounded by technologically advanced regions.  

   

(v) The spatial Durbin model. This model combines the SAR and SCM models by imposing the 

single restriction ξ = 0, so that y = Xδ +ηWy + WXρ  + μ.  Hence, both Wy and WX are 

included as additional explanatory variables.  This specification, however, is likely to suffer 

from severe multicollinearity between Wy  and WX  and there seems to be a large element of 

double counting, as Wy is hypothesised to be determined by WX. If there were a perfect 

statistical fit, the two would be identical.  

 

Ideally, the appropriate search strategy to select between specifications (i) to (v) would be the 

Hendry-style one of estimating the general model, equation (15), and “testing down”. There are, 

however, two drawbacks with this strategy. First, if Wy and Wε are highly collinear then the 

standard errors will be inflated. Secondly, using the same weights matrices in the general model 

means that the estimated equation is not identified (Anselin, 1988). Yet, it is often difficult to 

determine on theoretical grounds why the weights matrices should differ between Wy and Wε.13 

The upshot of this is that we should be sceptical about distinguishing between the quantitative 

impact of the two variables and attaching different economic interpretations to them, unless one 

is statistically insignificant. Thus, we would hesitate to interpret η being statistically significant 

as capturing a cross-regional spillover effect, unless the estimate of ξ is statistically 

insignificant.   

 

In addition to specifications (ii) to (v), there is a further spatial model nested within equation 

(15).  Although this model seems to have gone unnoticed in the spatial econometrics literature, 

it is the one that we prefer on theoretical grounds.  It is basically an extension of the SCM to 

include an error term that obeys a first-order spatial autoregressive process.  Essentially, 

therefore, the model represents a marriage between the SCM and the SEM.  By marrying these 

two models, it is able to capture both substantive and nuisance sources of spatial 

autocorrelation. 

 

                                                      
12 It should be noted, however, that whereas spillovers as modelled using the SAR model adopt 
a global character, those modelled using the SCM adopt a local character (Anselin, 2006, p 918; 
Roberts, 2006, p 22). 
13 Although we are able to do this in one specification of our model (see section 4.2 below). 
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(vi) The spatial cross-regressive error model (the spatial hybrid model)(SHM) 

This model involves the single restriction η = 0 and therefore takes the form y = Xδ  + WXρ  + 

ξWε + μ..  As indicated, it presents the advantage of explicitly modelling both the substantive 

and nuisance components of any possible spatial autocorrelation.  In particular, while WX (i.e., 

Wq, WlnTFP0 and WlnD0) models the substantive, or economic, component, the nuisance 

component is captured by Wε.   

 

4.  The results for total manufacturing 

 

4.1. Data 

 

The data used in this paper is taken from Cambridge Econometrics’ Regional Economic 

Database, supplemented and amended, where necessary, by national sources. Output is gross 

value added (GVA) in constant 1995 prices and is measured using a purchasing power standard 

exchange rate, whilst employment is the total number of hours worked. The analysis is confined 

to the NUTS1 regions, as this is the lowest level of spatial aggregation for which independent 

gross investment figures are available. Such regions are defined on the basis of country-specific 

administrative boundaries, which makes nuisance spatial autocorrelation a likely feature of the 

data.  This helps to motivate the use of the SHM as our preferred spatial specification.  Overall, 

complete, reliable information was obtained for 59 regions drawn from 15 European 

countries.14 Following, for example, Hall and Jones (1999, p 89, fn 5), the capital stock for 

region j in the base year of 1986 was calculated using the formula Kj,1986 = (Ij, aver. 81-86)/(gj + δ) 

where Ij,aver. 81-86 denotes the average level of gross investment over the period 1981-1986, g the 

growth rate of gross investment over the same period and δ the rate of capital obsolescence, 

which was taken to be 5%.  Capital stock estimates for subsequent years were then calculated 

using the perpetual inventory method.  Other assumptions for the rate of depreciation were also 

tried, but the 5% assumption produced the most reasonable cross-regional estimates of capital-

GVA ratios. 

 

4.2. Estimation of the demand-side version of the augmented dynamic Verdoorn law 

 

                                                      
14 The countries covered are Austria, Belgium, Denmark, Germany, Finland, France, Greece, 
Italy, Ireland, Netherlands, Portugal, Spain, Sweden, Switzerland, and the UK.  A full listing of 
the regions included in the sample is available on request. 
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Table 1 presents cross-sectional results for the full-sample period of 1986-2002 for the demand-

side version of the augmented dynamic Verdoorn law given in equation (7), using the 

specifications (i) to (vi) outlined in section 3.15  In all cases, the measure of initial TFP adopted 

is the one that makes no correction for increasing returns (see the discussion concerning 

equation (14)). Likewise, the implied speed of catch-up between regions due to technological 

diffusion (φ) that we calculate is  based on constant returns to scale.16 Moran’s I, as well as the 

two LM tests, namely, LMSAR and LMSEM, confirm the presence of spatial autocorrelation in the 

OLS residuals and therefore justify the additional use of spatial econometric methods.   

 

From Table 1, it can be seen that specifications (ii) to (vi) all yielded very similar results, which 

are close to the OLS estimates. The estimated coefficient on q (i.e. the Verdoorn coefficient) 

ranged from 0.502 to 0.673, implying that ν̂  (the estimate of the composite measure of returns 

to scale) varied from 2.199 to 3.060.  These estimates are very similar to those reported in 

previous Verdoorn law studies and demonstrate the importance of the demand-side in 

stimulating TFP growth (McCombie et al., 2002). 

 

It is interesting to note that, for all specifications, the implied estimate of  (exogenous rate of 

technological change) is negative.

λ~

17  With the exception of for the SAR model, however, the 

estimates of the intercept are not statistically significant.  The diffusion of innovations from the 

more to the relatively less advanced regions is also an important source of TFP growth, as 

indicated by the statistically significant negative coefficient on lnTFPj0 with the (conditional) 

speed of catch-up, φ, estimated as being between 1.43% and 2.17% per annum. The output 

density variable is also significant with a positive coefficient, suggesting the existence of 

dynamic agglomeration economies as an additional source of localised increasing returns. The 

estimated coefficient implies that a doubling of the density increases TFP growth by 0.42 

                                                      
15 With the exception of specification (i), all specifications were estimated using Maximum 
Likelihood (ML) techniques.  Unless otherwise stated, the spatial weights matrix, W, used in the 
estimation of the spatial specifications was a simple row-standardised first-order contiguity 
matrix, with two regions being defined as contiguous if they share a common administrative 
border. 
16 The estimate of φ is given by . This excludes the influence of the 
spatially lagged lnTFP

TT /)]ˆ1[ln(ˆ
1θφ −−=

j0. The estimates of φ that were obtained using , which are 
available on request, were lower than those reported in Table 1.  

*
0jTFP

17 From, for example, equation (7), the estimated rate of exogenous technical change, can be 
found by multiplying the constant term by the indirect estimate of ν. 

~

λ
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percentage points per annum. Consequently, regional growth cannot be fully explained without 

taking account of these additional explanatory variables.   

 

It is worth emphasising the virtually identical coefficients and t-values associated with Wtfp and 

Wε  in the spatial autoregressive model (SAR) and the spatial error model (SEM) specifications 

respectively (i.e., Table 1, equations (ii) and (iii)) This makes it very difficult to discriminate 

between the two specifications on statistical grounds.   

 

As discussed above, we have good theoretical grounds for preferring what we have termed the 

“spatial hybrid model”, to the SAR and SEM models.  Thus, our preferred set of results is given 

in Table 1 (vi).  This is because, as mentioned, the SHM allows for the disaggregation of the 

substantive components of any spatial autocorrelation, allowing an assessment to be made of 

the channels through which cross-regional spillovers might occur, while correcting for any 

nuisance component through Wε.  In particular, the different channels are captured by the 

spatially lagged regressors WX.  In this regard, it shows that a faster growth of output of the 

surrounding regions has a significant effect on TFP growth of the region under consideration; a 

1 percentage point increase in the growth of the surrounding regions increases the growth of 

TFP in the region by nearly 0.3 percentage points. Thus, the gains from the Verdoorn effect 

through learning-by-doing and induced technological change are not completely localised to the 

region in question, but directly spillover into surrounding regions. There is, moreover, evidence 

of a cross-regional spillover effect from dynamic agglomeration economies as evidenced by the 

statistically significant positive coefficient of WlnD. Finally, estimation of the SHM suggests 

that TFP growth is inversely related to the initial level of the region’s TFP. This is consistent 

with the hypothesis that the more technologically backward a region is, the more it benefits 

from the spatial diffusion of innovations from the more advanced EU regions and other 

technologically advanced countries. The estimated coefficient on WlnTFP0 is positive, which 

might be taken as suggesting that a region benefits from having more, relative to less, 

technologically advanced neighbours. This might be expected because it increases the 

propensity to benefit from technological diffusion. Notwithstanding this interpretation, 

however, the estimated value of the coefficient is statistically insignificant. 
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We also estimated the models where the level of TFP was adjusted to allow for the presence of 

increasing returns to scale.18 For the SHM, this made very little difference to ν̂ , which was 

found to be 3.306 compared to 3.060 in Table 1, equation (vi). The coefficient on lnTFP 

increased from –0.026 to –0.0013 and was still statistically significant. All the other coefficients 

did not change greatly in magnitude and were statistically significant. 

 

TABLE 1 HERE 

 

A commonly neglected shortcoming of traditional spatial models concerns the weights matrix.  

In particular, the weights matrices typically used implicitly possess a scale invariance property.  

Thus, the strength of interaction between region j and a neighbouring region is assumed to be 

independent of the economic sizes of the two regions.  This is the case with the weights matrix, 

W, employed above, so that the inclusion of Wq, for example, implies that the impact on region 

j of a neighbouring region's output growth is independent of the size of that region, which is 

rather implausible. More plausible is the assumption that scale does matter, so that 

economically larger neighbours have a greater impact on the growth of j.  To allow for this, we 

specify the following weights matrix:  

 

⎥
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where
j

i
ij Q

Qw =  iff i and j share a common administrative border and ji ≠ , and 

otherwise.  Notice that, in order to preserve the idea that it is the absolute size of 

regions that matters, this matrix is not row-standardis

0wij =

ed.19   

                                                     

 

When we used W1 for all the lagged spatial variables, the estimates of the degree of increasing 

returns did not vary very much. (The full results are not reported here.)    Demonstrative of 

 
18 For reasons of space, the full results are not reported here.  They are, however, available on 
request. 
19 An alternative is to row standardise W1 so that the relative sizes of the surrounding regions, 
rather than their absolute sizes, are taken into account. This alternative procedure yielded 
similar results to those reported.  
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these findings are the following results, which were obtained from estimation of the SHM using 

the increasing returns correction to lnTFP0 (i.e. lnTFP0*): 

 

 

 

 

tfp = -0.025 + 0.491q – 0.003lnTFP*
0  + 0.006 lnD0 + 0.061W1q + 0.000W1lnTFP*

0
       (-1.19)    (4.25)    (-2.41)                 (4.29)            (1.06)           (0.068) 

 
+ 0.003W1lnD0 + 0.466W1ε                 pseudo- 167.0R 2

adj = ; %3.0ˆ;963.1ˆ == φν    
 (2.77)               (61.09) 

 
 
Thus, the implied estimate of ν is just less than two.  Noticeable, however, is that the speed of 

catch-up due to technological diffusion (0.3% per annum) is slower than that reported in Table 

1, equation (vi).  This is to be expected, given the correction of TFP for aggregate increasing 

returns to scale.  More importantly, the spatially weighted growth of output is now statistically 

insignificant. 

 

We also estimated the specifications (i) to (vi) using panel data techniques, allowing for both 

one–way and two-way fixed effects.20  In particular, the panel consists of three periods, 1986-

1991, 1991-1996, 1996-2002.  The results are not reported here, but allowing for the fixed 

effects did not make any appreciable difference to the results obtained using the cross-sectional 

data. We have reported the cross-sectional results in preference to the panel data results because 

of the difficulty of calculating LMSAR and LMSEM using panel data analysis and because of the 

desirability of using the longest possible time period to minimise cyclical fluctuations (Shioji, 

1997; cited in Barro and Sala-i-Martin, 2004, p 496). 

 

4.3. Estimation of the supply-side specification of the dynamic Verdoorn law 

 

It will be recalled, that the supply-side specification of the dynamic Verdoorn law is given by 

equation (11), where the growth of total factor inputs (tfi) replaces output growth (q) as a 

                                                      
20 In doing so, we used the spatial panel estimators of Elhorst (2003), which are ML estimators.  
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regressor. Here, the causation is hypothesised to run from the growth of inputs to the growth of 

output and demand rather than vice versa.  Although a supply-side specification has not 

previously been estimated for the European regions, when such specifications have been 

estimated for other samples, they have often been found to suggest constant returns to scale 

(McCombie and Thirlwall, 1994, Chapter 2).21  Consequently, we estimated equation (11) for 

specifications (i) to (vi).  The results obtained from estimation of the SHM specification were:  

 
 
 
 
 
tfp =     0.016    -   0.272tfi  - 0.029lnTFP0 + 0.002lnD0  - 0.169Wtfi         
           (3.11)       (-1.55)      (-3.25)                (1.17)          (-0.88)               

      
  + 0.036 WlnTFP0 - 0.002WlnD0+ 0.526Wε      pseudo- 2

adjR  = 0.506;  p.a. %20.2ˆ;729.0ˆ == φν
               (2.61)                 (-0.07)             (5.03) 
                                                                                                   
 

This is the supply-side equivalent to the demand-side specification of the SHM, the results of 

which were reported in Table 1, equation (vi). 

 

Although the results of the other specifications, i.e., specifications (i) to (v), are not reported for 

reasons of space, they were, in all cases, also found to suggest either constant (ν = 1) or 

decreasing returns to scale  (ν < 1), despite the corresponding demand-side specifications 

reported in Table 1 all suggesting increasing returns. If the supply-side specification is correct, 

the estimate of decreasing returns to scale could be due to a relatively fixed factor of production 

such as land. It can also be seen that both lnTFP0 and the density variable take on the expected 

signs but only the former is statistically significant. The spatially lagged level of lnTFP0 also 

has a significant positive impact on TFP growth, whilst the remaining WX variables are 

insignificant.  The results obtained using W1tfi instead of Wtfi and calculating lnTFP0 using the 

estimated degree of returns to scale were not substantially different – ν̂  invariably showed 

either constant or decreasing returns to scale. These conclusions also proved robust to the use of 

panel data techniques. 

 

4.4. FGS2SLS estimation of the dynamic Verdoorn law 

                                                      
21 The sole exception seems to be provided by McCombie and de Ridder (1984) for the US 
states, who found increasing returns using both demand- and supply-side specifications of the 
Verdoorn law. 
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Given the dramatic differences obtained from the demand- and supply-side specifications of the 

dynamic Verdoorn law, the assumption of exogeneity is clearly crucial in the estimation of v. 

Consequently, from either a supply (neoclassical) or a demand-side perspective, both equations 

(7) and (11) should be estimated by methods that take endogeneity into account and, ideally,  

the implied estimates of v should converge.  

 

To this end, we make use of a feasible generalised spatial two-stage least squares (FGS2SLS) 

procedure that has recently been proposed by Fingleton and LeGallo (2006). This approach is 

designed to control for endogeneity of the explanatory variables in the presence of a first-order 

spatial autoregressive error process.  It is, therefore, ideal for estimation of the SHM.  Apart 

from controlling for endogeneity, the approach, because it is an instrumental variable (IV) 

approach, has the added advantage of also helping to control for both possible omitted variable 

bias and the existence of measurement errors in the explanatory variables (Greene, 2003, p 86), 

which might arise, for example, from the imperfect measurement of distance in the W matrix.22   

 

Basically, the FGS2SLS procedure consists of three stages.  In the first stage, the equation of 

interest is estimated using 2SLS; in the second stage, the residuals from the first stage 

regression are used to obtain a consistent estimate of the spatial error parameter, ξ; and finally, 

in the third stage, , is used to filter both the dependent and explanatory variables and 2SLS is 

re-performed using filtered versions of the first stage instruments.  Although any set of 

appropriate instruments may be used in the first stage, Fingleton and LeGallo (2006) 

recommend basing them on the three-group method (Barlett, 1949; Kennedy, 2003). According 

to this method, the instrument of an endogenous variable is taken to be an indicator variable that 

is coded 1, 0, -1 according to whether an observation on the endogenous variable is in the top 

third, middle third or bottom third of its distribution.  Spatial lags of these indicator variables 

are also used as instruments. 

ξ̂

 

For the SHM, Table 2 presents the results obtained from re-estimating both the demand- and 

supply-side versions of the Verdoorn law using the FGS2SLS procedure described above.23  As 

                                                      
22 In contrast to ML estimators, the FGS2SLS estimator also does not rely upon the assumption 
of a normally distributed error term for its theoretical properties. 
23 The procedure was iterated until the absolute difference between the stage 3 residuals in 
successive iterations was less than or equal to 0.001.  In general, very few iterations were 
required for convergence. 
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can be seen, controlling for endogeneity using this procedure made very little difference to the 

results obtained.24  In particular, the estimated Verdoorn coefficient in the demand-side version 

of the dynamic law is 0.633, which is virtually unchanged from when we did not control for 

endogeneity (see Table 1(iv)).25  Consequently, despite the instrumentation, localised increasing 

returns appear just as strong as ever using this specification.  Likewise, the supply-side version 

of the law continues to show non-increasing returns to scale.  Hence, instrumentation using 

Fingleton and LeGallo’s (2006) FGS2SLS procedure takes us no closer to a resolution of the 

controversy over the correct specification for the dynamic Verdoorn law, and, therefore, no 

closer to a consensus estimate of the degree of localised returns to scale.  26

 

 

TABLE 2 HERE 

 

The problem is due to the fact that two different instruments are being used in the above 

estimations of the demand- and supply–side specifications.  In particular, the groups of 

observations coded -1, 0, 1 differ according to the direction of normalisation (i.e., whether q or 

tfi is used as a regressor). These results illustrate the problem of using an IV-based estimation 

technique when either different instruments are being used or the equation is over-identified. In 

particular, in this case, the method of normalisation still affects the estimates obtained 

(Maddala, 1992, pp. 377-381; Greene, 2003, p. 402). 

 

Consequently, use of an IV based estimator does not resolve the problem of the disparities in the 

estimated degree of local returns to scale, and the method of normalisation has to be determined 

                                                      
24 This is despite the fact that, from the results of Sargan’s test, the instruments appear to be 
valid.  In particular, Table 2 reports two sets of results for Sargan’s test.  The first set of results 
is for Sargan’s test as applied to the (filtered) instruments used in the third stage of the Fingleton 
and LeGallo estimation procedure.  Meanwhile, the second set of results is for Sargan’s test as 
applied to the (unfiltered) instruments used in the first stage of the procedure. 
25 Durbin’s ranking method was also used where the instruments are the ranks of the various 
regressors. This is a more efficient procedure than the Bartlett three-group method, but Sargan’s 
test suggested some problems with the endogeneity of the instruments which were not present in 
the case of the latter procedure (see Table 2). Both methods, however, gave almost identical 
results. 
26 Adopting a slightly different method of instrumentation to that recommended by Fingleton 
and LeGallo did yield marginally more satisfactory results.  Specifically, when, instead of 
filtering, we recoded the indicator variables used as instruments in stage 3 of the FGS2SLS 
procedure according to the newly constructed filtered endogenous variables, we found that the 
supply-side version of the dynamic Verdoorn law gave 04.1ˆ =ν .   
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on a priori grounds, normally on the basis of economic theory (Maddala, 1992, p.380). In 

regional economies with capital and labour mobility, the key factor determining the economic 

performance of a region is its price and non-price competitiveness, including the structure of its 

production and whether or not it has industries that have a high income elasticity of demand. As 

Thirlwall (1980, p.420) puts it: “For a region in which capital and labour are highly mobile, in 

and out, growth must be demand determined. If the demand for a region’s output is strong, 

labour and capital will migrate to the region to the benefit of that region and to the detriment of 

others. Supply [therefore] adjusts to demand.” (See also McCombie and Thirlwall, 1994, 

Chapter 8; Porter, 1996.)27 The alternative, namely, that each region faces an infinitely elastic 

demand curve for its output and can sell as much as it produces, does not seem plausible. Given 

this, our theoretical preference is to specify output growth as the regressor. 

 

Our argument that the demand-side specification is to be preferred is consistent with findings in 

other regional samples.  For example, in estimating a structural model of city growth 

determinants for Brazil, da Mata et al (2007, p. 16, emphasis in original) find that "The key 

positive component to growth comes from increases in market potential...; much of what 

happens to cities is determined by conditions external to them- demand for their products as 

driven by what is evolving geographically around them." It is also consistent with the clear 

demand linkage that exists in new economic geography models between local labour 

productivity and market potential (see, for example, Redding and Venables, 2004).28

 . 

 

4.5. Estimation of the static Verdoorn law and resolution of the static-dynamic paradox 

 

Given the variables lnTFP0 and lnD0, there is no equivalent static specification of the Verdoorn 

law to our augmented dynamic Verdoorn law that can be estimated.  Therefore, for our 

augmented law, we cannot test for the existence of the static-dynamic Verdoorn law paradox.  

However, whilst lnTFP0 and lnD0 have been found to be statistically significant and give 

economically meaningful results, their inclusion has not dramatically altered the implied 

estimates of v obtained. Consequently, using the SHM, we estimated static versions of the 

demand- and supply-side specifications of the Verdoorn law excluding these variables.  That is 

to say, we estimated: 

                                                      
27 One of the referees did, however, express a strong preference for the supply-side 
specification. 
28 We are grateful to Harry Garretson for this observation. 
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 lnTFP = c6 + b12lnQ + b13WlnQ + b14Wε + μ1  (24) 

and 

 lnTFP = c7 + b15lnTFI + b16WlnTFI + b17Wε + μ2 (25) 

 

 

The panel data results are reported in Table 3.  There are four periods, 1986, 1991, 1996 and 

2002. It can be seen that the estimate of v using time effects (which has the effect of allowing 

for shifts in the production relationship) is, in both cases, consistent with constant returns to 

scale. This is equivalent to the use of pooled data, with a dummy variable to allow for 

exogenous technological change. Consequently, for the demand-side specification, the estimates 

of the static Verdoorn law stand in marked contrast to the dynamic specification. In the case of 

the supply-side specification, both the static and dynamic estimates are in accord. 

 

As we have seen, McCombie and Roberts (2007) have suggested that the most likely 

explanation for the static-dynamic paradox is the existence of spatial aggregation bias in the 

static estimates.  According to this hypothesis, the use of a two-way estimator that captures both 

time and regional fixed effects should give unbiased estimates of ν similar to those obtained 

from the dynamic Verdoorn law.29  This is confirmed for the European data set under 

consideration. As shown in Table 3, once two-way effects are introduced, the static demand-side 

specification exhibits substantial increasing returns to scale of a magnitude comparable to the 

estimates from the corresponding dynamic law. We also used an IV approach but given the 

close statistical fit (i.e., the high OLS R2), it did not make any significant difference to the 

estimates, which is consistent with Wold’s proximity theorem (Wold and Faxer, 1957).   

 

  TABLE 3 HERE 

  

However, interestingly, the static supply-side specification estimated using both one-way and 

two-way fixed effects gives results consistent only with constant returns to scale. This is not 

surprising, though. The two-way fixed effects estimator gives an unbiased estimate of ν, by 

                                                      
29 Using simulation analysis, McCombie and Roberts demonstrate that, using panel data, a one-
way fixed-effects (FE) estimation of the static Verdoorn law will lead to a biased estimate of ν, 
i.e., it will suggest constant returns to scale, by picking up the cross-section variation. However, 
the two-way FE estimator gives an unbiased estimate, as it also employs the time-series 
variation in the data that is not subject to the spatial aggregation bias. 
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capturing the within-region variation of the data, which is not subject to the aggregation 

problem. In the case here, we know that the within-region variation will approximate to the 

results using growth rates, and in the case of the supply-side specification, this gives constant or 

decreasing returns to scale.30 In the dynamic specifications of both the demand- and supply-side 

Verdoorn laws, lnD0 was, with one exception, found to have a significant effect on the growth 

of TFP, suggesting significant (intra-regional) dynamic economies of agglomeration. As we 

have noted, it is not possible to derive an estimable static specification of this model. However, 

an alternative hypothesis that we discussed in section 2.1, was that agglomeration economies 

may be of the static variety and hence only have a “level effect” (see, in particular, the 

discussion of equations (9) and (10)). 

 

Consequently, we estimated both the static demand- and supply-side specifications of the 

Verdoorn law using output and inputs expressed in per square kilometre terms, (i.e., with these 

variables divided by H) with panel data and time effects. In both cases, the estimated results did 

not differ greatly from the “conventional” specification of the static laws using the unadjusted 

log-levels; in both cases, the hypothesis of constant returns to scale could not be refuted.31  In 

retrospect, this is not surprising, as, with constant returns to scale, the results will not be 

affected if all the variables are divided by H.  See, for example, the equivalent specification of 

the static Verdoorn law as equation (9) when ν = 1 holds. A similar argument holds for the 

supply-side specification.  

 

Using the density data for both specifications and now also including regional effects, as well as 

time effects, (so the model is estimated using the two-way estimator) washes out the effect of H, 

which is due to its inter-regional variation. Consequently, the results obtained are the same as 

those reported in Table 3 and obtained using the two-way estimator and the log levels of the 

variables.  The demand-side specification exhibits substantial increasing returns to scale and the 

supply-side specification, decreasing returns to scale. Accordingly, the results using density 

variables do not shed any further light on whether or not there are increasing returns to scale 

when levels are used. 

 

                                                      
30 It is worth noting, however, that, using postwar data for Spanish regional manufacturing, 
León-Ledesma (1999) found two-way random effects estimation of the static supply-side 
specification to give increasing returns.  
 
 
31 The results are not reported here but are available on request from the authors. 
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5. Conclusions 

 

This paper has revisited the question of the extent of localised increasing returns in EU regional 

manufacturing.  This it has done through the spatial econometric estimation of the Verdoorn 

law.  In particular, attention was focused on the estimation of the law using the spatial hybrid 

model.  This is because this model is able to control for both nuisance and substantive sources 

of spatial autocorrelation, where the former is attributable to measurement error arising from the 

use of the NUTS classification of regions and the latter reflects the presence of spillover effects 

between regional economies.  Moreover, unlike previous studies for the EU (Fingleton and 

McCombie, 1998; Pons-Novell and Viladecans-Marsal, 1999), estimates of the capital stock 

were calculated and used in the specification of the law. Our results with the demand-side 

specification of the dynamic Verdoorn law with q as a regressor gave estimates of substantial 

increasing returns to scale, where returns to scale were broadly defined to include the effect of 

induced technological change. It was also found that the coefficient of the logarithm of the 

initial level of TFP was negative and statistically significant. This suggests that the diffusion of 

innovations from the relatively more to the relatively less advanced regions (or from advanced 

countries outside the EU) was a significant explanatory factor in accounting for disparities in 

TFP growth. A density variable that was introduced to capture the effect of agglomeration 

economies on TFP growth also proved to be statistically significant, although its quantitative 

effect was small. These variables, when spatially lagged, often turned out to be significant, 

suggesting significant cross-regional spillover effects, although, interestingly, the spatially 

lagged output growth turned out to be not statistically significant when the W1 weights matrix 

was used.  

 

The alternative supply-side specification, which used the weighted growth of the total factor 

inputs (tfi) as a regressor, always suggested either decreasing or constant returns to scale and the 

use of a recently proposed FGS2SLS estimation procedure was not able to resolve the 

discrepancy between the two specifications.  This was because estimation of the two 

specifications using an IV-based method involves the use of different instruments.  In these 

circumstances, we are forced to rely upon a priori theoretical arguments to determine the 

preferred specification.  Given this, we argued strongly in favour of the demand-side 

specification of the Verdoorn law, in which case our results suggest the existence of substantial 

localised increasing returns, in line with previous studies. 
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It was also found that the EU regional data gives rise to the static-dynamic Verdoorn law 

paradox. In particular, estimation of the demand-side specification of the Verdoorn law in static 

(log-level) form suggests constant returns to scale prevail, whilst estimation in dynamic form 

suggests substantial increasing returns to scale. The conjecture of McCombie and Roberts 

(2007) that this is due to spatial aggregation bias is given support by the finding that the two-

way fixed effects estimation of the static relationships finds, as predicted, increasing returns in 

accord with the dynamic estimates. The static supply-side specification still did not refute the 

hypothesis of either constant or decreasing returns to scale.  

 

Thus, our preferred results provide strong support for the presence of substantial static and 

dynamic returns to scale at a local level.  They, furthermore, indicate the existence of both a 

significant technological diffusion effect from the rest of the world and the surrounding regions 

and a significant dynamic agglomeration effect. 

 

References 

 

Alcalá, F and Ciccone, A. 2004. “Trade and Productivity”, Quarterly Journal of Economics, 

vol. 119, pp. 613-646 

 

Anselin, L. 1988.  Spatial Econometrics: Methods and Models, Dordrecht, Kluwer. 

 

________. 2006. “Spatial econometrics”, in: Mills, T.C. and Patterson, K. (eds.), Palgrave 

Handbook of Econometrics: Volume 1, Econometric Theory, Palgrave Macmillan, Basingstoke, 

pp. 901-969. 

 

Anselin, L., Bera, A., Florax, R. J. G. M., and Yoon, M. 1996. “Simple diagnostic tests for 

spatial dependence”, Regional Science and Urban Economics, 26, pp. 77-104. 

 

Anselin, L. and Rey, S., 1991. “Properties of tests for spatial dependence in linear regression 

models”, Geographical Analysis, 23, pp. 112-131. 

 

Arrow, K. 1962. “The Economic Implications of Learning by Doing", Review of Economic 

Studies, 29, pp. 155-173. 

 

 27



 

Baldwin, R. and P. Martin, 2004. “Agglomeration and regional growth”, in: V. Henderson and 

J. Thisse (eds), Handbook of Regional and Urban Economics, Elsevier Science Publishers, 

Amsterdam 

 

Barro, R. J. and Sala-i-Martin, X. 1991. “Convergence Across States and Regions”, Brookings 

Papers on Economic Activity,  1,  pp.107-158 

 

____________________________. 1992.  “Convergence”, Journal of Political Economy, 100, 

pp.223-251. 

 

____________________________. 2004. Economic Growth, (second edition), Cambridge, 

Mass: MIT Press. 

 
Bartlett, M.S. 1949. “Fitting a Straight Line When Both Variables are Subject to Error”, 

Biometrics,  5, pp. 207-212.  

 

Bernat, G. A., Jr. 1996.  “Does Manufacturing Matter? A Spatial Econometric View of Kaldor’s 

Laws”, Journal of Regional Science, 36, 463-477. 

 

Borts, G.H. and Stein, J.L. 1964. Economic Growth in a Free Market. Columbia University 

Press, New York. 

 

Ciccone, A. 2002. "Agglomeration Effects in Europe", European Economic Review, 2002, 46, 

213-227. 

 

Ciccone, A. and Hall, R.E. 1996. "Productivity and the Density of Economic Activity", 

American Economic Review,  86, 54-70. 

 
da Mata, D., U. Deichmann, J.V. Henderson, Lall, S.V. and H.G. Wang. 2007.  "Determinants 

of city growth in Brazil", Journal of Urban Economics, forthcoming. 

 

Dixon, R. and. Thirlwall A.P. 1975. “A Model of Regional Growth Rate Differentials Along 

Kaldorian Lines”. Oxford Economic Papers, 27, 201-214. 
 

 28



 

Douglas, P. 1976. “The Cobb-Douglas Production Function Once Again: Its History, Its Testing, 

and Some New Empirical Values “, Journal of Political Economy, 84, pp. 903-915.  

 

Elhorst, J.P. 2003. “Specification and Estimation of Spatial Panel Data Models”, International 

Regional Science Review, 24, pp. 244-268. 

 
Fingleton, B. and LeGallo J. 2006, "Finite Sample Properties of Estimators of Spatial Models 

with Autoregressive, or Moving Average, Disturbances and System Feedback", paper presented 

at the 53rd Annual North American Meetings of the Regional Science Association International, 

November 16 -18th. 

 

Fingleton, B. and J. S. L. McCombie. 1998. “ Increasing Returns and Economic Growth: Some 

Evidence from the European Union Regions”, Oxford Economic Papers, 50, 89-105. 

 

Florax, R.J.G.M. and Folmer H, 1992. “Specification and Estimation of Spatial Linear 

Regression Models. Monte Carlo Evaluation of Pre-test Estimators”. Regional Science and 

Urban Economics, 22, pp. 405-432. 

 

Florax, R. J. G. M., Folmer, H., and Rey, S. J. 2003. “Specification searches in spatial 

econometrics: the relevance of Hendry's methodology”, Regional Science and Urban 

Economics, 33, pp. 557-579. 

 

Frankel, J.A. and Romer, D, 1999, “Does Trade Cause Growth?”, American Economic Review,  

89, pp. 379-399. 

 

Glaeser, E.L., Kallal, H.D., Scheinkman, J.A. and Sheifer, A, 1992. “Growth in Cities”, Journal 

of Political Economy, 100, pp. 1126-1152. 

 

Greene, W.H. 2003. Econometric Analysis. New Jersey: Prentice-Hall. 

 

Griliches, Z. and Ringstad, V. 1971.  Economies of Scale and the Form of the Production 

Function, Amsterdam: North Holland. 

 
Hall, R.E. and Jones, C.I. (1999), “Why Do Some Countries Produce So Much More Output 

Per Worker Than Others? Quarterly Journal of Economics, 114, pp. 83-116.  

 29



 

 

Kaldor, N. 1957. “A Model of Economic Growth”, Economic Journal, 67, pp. 591-624. 
 

___________.1961. “Capital Accumulation and Economic Growth,” in F. A. Lutz and D.C. 

Hague, (eds), The Theory of Capital, London, Macmillan. 

 

___________. 1966. Causes of the Slow Rate of Growth of the United Kingdom, Cambridge, 

Cambridge University Press. 

 

__________. 1970. “The Case for Regional Polices”, Scottish Journal of Political Economy, 17, 

337-348. 

___________. 1975. “Economic growth and the Verdoorn Law--A Comment on Mr Rowthorn's 

Article”, Economic Journal, 85, pp. 891-896. 

Kennedy, P. 2003.  A Guide to Econometrics, (fifth edition), Oxford, Blackwell. 

 

Krugman, P. R. 1991. “Increasing Returns and Economic Geography”, Journal of Political 

Economy, 99, 483-499. 

 

León-Ledesma,  M. A. 1999. "Verdoorn's Law and Increasing Returns: An Empirical Analysis 

of the Spanish Regions", Applied Economics Letters, 6, 373-376. 

 
McCombie, J.S.L., 1982a, "How Important is the Spatial Diffusion of Innovations in Explaining 

Regional Growth Disparities?", Urban Studies, vol. 19(4), pp. 377-82.  

 

___________. 1982b. "Economic Growth, Kaldor's Laws and the Static-Dynamic Verdoorn 

Law Paradox", Applied Economics, 14.  pp. 279-94.  

 

McCombie, J. S. L. and J. R. de Ridder. 1984. “The Verdoorn Law Controversy: Some New 

Empirical Evidence Using US State Data”, Oxford Economic Papers, 36, 268-284. 

 

McCombie, J. S. L., Pugno, M. and Bruno, S. 2002. Productivity Growth and Economic 

Performance. Essays on Verdoorn’s Law, Basingstoke: Palgrave. 

 

 30



 

McCombie, J. S.L. and Roberts, M. 2007.  "Returns to scale and regional growth: the static-

dynamic Verdoorn law paradox revisited", Journal of Regional Science, forthcoming. 

 

McCombie, J.S.L. and Thirlwall, A.P 1994. Economic Growth and the Balance-of-Payments 

Constraint, London, Macmillan. 

 

Maddala, G.S. 1992. Introduction to Econometrics. Basingstoke. Macmillan (second edition) 

 

Moroney, J. R. 1972. The Structure of Production in American Manufacturing, Chapel Hill: 

University of North Carolina Press. 

 

Pons-Novell, J. and Viladecans-Marsal, E.1999. “Kaldor’s Laws and Spatial Dependence: 

Evidence for the European Regions”, Regional Studies, 33, 443-451. 

 

Porter, M. 1996. “Competitive Advantage, Agglomeration Economies, and Regional Policy”, 

International Regional Science Review, 19, pp.85-90. 

 

Roberts, M. 2004. “The growth performances of the GB counties: some new empirical evidence 

for 1977-1993”, Regional Studies, 38, pp. 149-165. 

 

___________. 2006. “Seek and you will (not) find: model specification and search in the 

presence of two-directional spatial autocorrelation”, paper presented at the 53rd Annual North 

American Meetings of the Regional Science Association International, November 16 -18th.

 

Roberts, M. and Setterfield, M. 2006. “Endogenous Regional Growth: A Critical Survey”, 

Cambridge Centre for Economic and Public Policy, Department of Land Economy, University 

of Cambridge, mimeo. 

 

Rowthorn, R. E. 1975 “What Remains of Kaldor's Law?” Economic Journal. 85, pp. 10-19.  

 

Shioji, E (1997) “It’s Still 2%: Evidence on Convergence from 116 years of US States Panel 

Data.” Working Paper, Universitat Pompeu Fabra. 

 

Solow, R. M. 1956. “A Contribution to the Theory of Economic Growth”, Quarterly Journal of 

Economics, 70, pp. 65-94. 

 31



 

 

Swan, T. 1956. “Economic Growth and Capital Accumulation”, Economic Record, 32, pp. 334-

361.   

 

Thirlwall, A.P. 1980, “Regional Problems are Balance of Payments Problems”, Regional 

Studies, 14, pp. 419-426. 

Venables, A.J. and S. Redding. 2004.  "Economic Geography and International Inequality", 

Journal of International Economics, 62, pp. 53-82.  

 

Verdoorn, P.J.  1949. “Fattori che Regolano lo Sviluppo della Produttività del Lavoro” 

L’Industria, 1, 3-10. (English translation by Anthony Thirlwall - Chapter 3 in J.S.L. McCombie, 

M. Pugno and B. Soro, (eds) Productivity Growth and Economic Performance. Essays on 

Verdoorn’s Law, Basingstoke: Palgrave, 2002). 

 

Wold  H. and Faxer, P. 1957. “On the Specification Error in Regression Analysis”, Annals of 

Mathematical Statistics, 28, pp.265-267. 

 32



 

Table 1: The Dynamic Verdoorn Law (Demand-side Specification): Cross-sectional Data, 1986, 1991, 1996 
               and 2002 

                              tfp = c3 + b3q + b4lnTFP0 + b5lnD0 + {spatially lagged  terms} 
 

 
 
 

 
(i) OLS 

 
(ii)  SAR 

 
(iii) SEM 

 
(iv) SCM 

 
(v) SDM 

 
(vi) SHM 

Constant 
 

-0.001 
(-0.47) 

-0.005 
(-2.37) 

-0.001 
(-0.38) 

-0.003 
(-0.94) 

-0.003 
(-1.05) 

-0.003 
(-0.73) 

q 
 

0.664 
(7.95) 

0.586 
(8.54) 

0.502 
(6.81) 

0.673 
(7.96) 

0.599 
(8.06) 

0.673 
(8.73) 

lnTFP0 
 

-0.016 
(-2.61) 

-0.016 
(-3.17) 

-0.022 
(-3.34) 

-0.026 
(-3.40) 

-0.027 
(-4.20) 

-0.026 
(-4.55) 

lnD0
 

0.006 
(4.76) 

0.005 
(5.61) 

0.004 
(3.44) 

0.005 
(4.60) 

0.005 
(4.48) 

0.006 
(5.60) 

Wq 
 

   0.277 
(2.79) 

0.046 
(0.40) 

0.297 
(3.40) 

 
WlnTFP0 

 

    
0.014 
(1.36) 

 
0.018 
(2.09) 

 

 
0.011 
(1.11) 

WlnD    0.005 
(2.93) 

0.003 
(1.69) 

0.006 
(3.95) 

Wtfp 
 
 

 0.406 
(4.77) 

  0.387 
(3.16) 

 

 
Wε 

   
0.499 
(4.62) 

  
 

 
0.499 
(4.63) 

ν̂  
 

2.975 2.415 2.119 3.058 2.495 3.060 

φ̂  (% p.a.) 1.43 1.43 1.89 2.16 2.24 2.17 

 
pseudo- 2R  

 
0.582a

 
0.663 

 
0.675 

 
0.666 

 
0.671 

 
0.757 

 
pseudo- 2

adjR  
 

0.454a
 

0.593 
 

0.552 
 

0.540 
 

0.634 
 
0.666 

 
Moran’s I 

 
3.02 

[0.003] 

     

 
LMSAR 

 

 
6.29 

[0.012] 

     

LMSEM 14.18 
[0.000] 

     

 Notes:   
a
 2R and 2

adjR  respectively 
  Figures in parentheses are t-ratios and the figures in square brackets probability values. 
  SAR = spatial autoregressive model, SCM = spatial cross-regressive model, SDM =  
  spatial Durbin model, SEM = spatial error model, and SHM = spatial hybrid model. 
  LMSAR and LMSEM are Lagrange Multiplier tests for spatial autocorrelation in the form of the spatial           
autoregressive/spatial lag model and the spatial error model respectively.  Both tests are asymptotically  
distributed as  with 1 degree of freedom. 2χ

ν̂  is the estimated degree of returns to scale, and  the estimated speed of technological diffusion. φ̂
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Table 2 The Dynamic Verdoorn Law:  FGS2SLS Estimation, Cross-sectional Data, 1986-2002 
 
          Demand-side Specification:    tfp = c4 + b6q +b7lnTFP0 + b8lnD0 + {spatially lagged terms} 
          Supply-side specification:      tfp = c5 + b9tfi +b10lnTFP0 + b11lnD0 + {spatially lagged terms} 

 
 Demand-side specification Supply-side specification 
    

Constant 
 
 

q 
 
 

tfi 
 
 

lnTFP0
 
 

lnD0 
 
 

Wq 
 
 

Wtfi 
 
 

WlnTFP0
 
 

WlnD0 
 
 

Wε 
 
 

-0.001 
(-0.41) 

 
0.5789 
(5.04) 

 
- 
 
 

-0.028 
(-4.43) 

 
0.006 
(4.96) 

 
0.327 
(2.71) 

 
- 
 
 

0.016 
(1.43) 

 
0.006 
(2.97) 

 
0.499 
(2.13) 

0.008 
(2.84) 

 
- 
 
 

-0.105 
(-0.45) 

 
-0.032 
(-3.26) 

 
0.003 
(1.37) 

 
- 
 
 

-0.372 
(-1.44) 

 
0.030 
(2.03) 

 
-0.001 
(-0.36) 

 
0.470 
(1.99) 

ν̂  

φ̂  (% p.a.) 

2.37 
2.32 

0.90 
2.56 

 1718.0)2(2 =χ  
(p = 0.9177) 

3842.0)2(2 =χ  
(p = 0.8252) 

5129.0)2(2 =χ  
(p = 0.7738) 

1498.2)2(2 =χ  
(p = 0.3413) 

Sargan (stage 3) 
 

Sargan (stage 1) 

 
Notes:    Instruments used in the estimation procedure 

 Demand-side: iq, Wiq, iWq, WiWq where ix is an indicator variable coded 1, 0 or - 1 according to whether the 
observation on variable x is in the top third, middle third or bottom third of its distribution, and Wix is the 
spatial lag of ix.   
 Supply-side version: itfi, Witfi, iWtfi, WiWtfi where ix is an indicator variable coded 1, 0 or - according to whether  
the observation on variable x is in the top third, middle third or bottom third of its distribution, and Wix is the  
spatial lag of ix. 
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Master Copy 

Table 3  The Static Verdoorn Law: Panel Data Estimation, 1989,1991, 1996 and2002 
 
Demand-side specification:       lnTFP = c6 + b12lnQ + {spatially lagged  terms} 
Supply-side  specification:       lnTFP = c7 + b15lnTFI + {spatially  lagged  terms} 

 

 Demand-side specification 
 
(i) Time Effects   (ii) Time and 
                                  Regional Effects 
 

Supply-side specification 
 
(i) Time Effects   (ii) Time and 
                                  Regional Effects 
 

lnQ 0.034 
(1.88) 

 

0.623 
(13.66) 

  

lnTFI   -0.040 
(-2.23) 

 

-0.380 
(-5.21) 

WlnQ 0.100 
(3.00) 

 

0.038 
(0.68) 

  

WlnTFI   0.038 
(1.19) 

 

-0.232 
(-2.46) 

Wε 0.651 
(15.33) 

0.451 
(7.91) 

0.669 
(16.37) 

 

0.361 
(5.82) 

ν̂  1.035 
 

2.653 0.960 0.620 

pseudo- 2R  
 

0.527 0.909 0.548 0.845 

pseudo- 2
adjR  

 

0.950 0.990 0.952 0.983 

 

 Notes: - Figures in parentheses are t-ratios and the figures in square brackets probability values. 
 - ν̂  is the estimated degree of returns to scale. 
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