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Do Shared E-Bikes Reduce Urban Carbon Emissions? 

Abstract 

Under the threat of climate change, many global cities nowadays are promoting shared 

commuting modes to reduce greenhouse gas emissions. Shared electric bikes (e-bikes) 

are emerging modes that compete with bikes, cars, or public transit. However, there is 

a lack of empirical evidence for the net effect of shared e-bikes on carbon emissions, as 

shared e-bikes can substitute for both higher carbon emissions modes and cleaner 

commuting modes. Using a large collection of spatio-temporal trajectory data of shared 

e-bike trips in two provincial cities (Chengdu and Kunming) in China, this study 

develops a travel mode substitution model to identify the changes in travel modes due 

to the introduction of shared e-bike systems and to quantify the corresponding impact 

on net carbon emissions. We find that, on average, shared e-bikes decrease carbon 

emissions by 80–150 grams per trip. More interestingly, the reduction effect is much 

stronger in underdeveloped non-central areas with lower density, less diversified land 

use, lower accessibility, and lower economic level. Although the actual carbon 

reduction benefits of shared e-bike schemes are far from clear, this study bears 

important policy implications for exploring this emerging micro-mobility mode to 

achieve carbon reduction impacts. 

 

Keywords: Micro-mobility, sharing economy, e-bikes, substitution effects, carbon 

emissions, land use 
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1. Introduction 

Significant carbon emissions have long been a challenge for cities due to the high 

dependence of transportation on fossil fuels and a car-dependent lifestyle (Sloman and 

Hopkinson, 2020). Many global cities have introduced a variety of policies to promote 

sustainable transportation to reduce carbon emissions in cities and combat the 

challenges of climate change. Reducing carbon emissions in urban transport is 

particularly important for cities in developing countries. By 2050, two-thirds of the 

world population will live in urban areas, while about 95 percent of urban expansion in 

the coming decades will take place in developing counties (United Nations, 2019). 

China is the largest developing country undergoing rapid urbanisation. As more and 

more people move to cities in China, the challenges of urban congestion and emissions 

pollution will become even more acute.  

 

One of the major developments in green and shared urban transportation in recent years 

is shared electric bikes (e-bikes) sharing systems, a novel type of micro-mobility service. 

Developed based on bike-sharing, an earlier form of shared micro-mobility service, e-

bike sharing has gradually become the focus of governments and companies (Kr-asia, 

2020), as it is accessible on an “as-needed” basis and can offer travel at higher speeds 

with less physical effort than shared bikes, i.e. exclusively human-powered bicycles 

which we will refer to simply as bikes throughout this article. With considerable capital 
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investments being poured into their development, shared e-bikes continue to land in 

new cities and the market is growing exponentially (Elliott Ramos, 2021).  

 

However, whether shared e-bikes can help to achieve carbon reduction in cities is yet 

under debate. Shared e-bikes can either replace the unsustainable commuting modes 

that rely on fossil energy (e.g., by car) or substitute for some even cleaner commuting 

modes (e.g., by bike). Compared to cars or public transit, shared e-bike trips are more 

flexible and solve last-mile connectivity problems. Meanwhile, some citizens may be 

attracted to shared e-bikes because it is easier to travel longer and overcome road 

barriers than by using bikes (P Rérat, 2021). Since e-bikes are greener than cars but 

have greater carbon emissions than bikes, the net substitution effect of shared e-bikes 

on carbon emissions is ambiguous, since it depends on the forms of transportation 

combinations they substitute.  

 

A few past studies have used either simulations or surveys to investigate this research 

question (Bucher et al., 2019; McQueen et al., 2020; Wamburu et al., 2021), but there 

is still a lack of direct empirical evidence. In addition, existing studies have discussed 

the impact of various factors (e.g., weather and temperature) on the adoption of shared 

e-bikes (Bucher et al., 2019), while a few studies have explored the impact of the built 

environment (e.g., land use and accessibility) on the net carbon emissions of shared e-

bikes. Specifically, the substitutional choices between alternative transportation modes 
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are expected to vary in different urban contexts, which will result in spatial 

heterogeneities in the associated carbon emissions reductions. For example, in more 

compact and accessible neighbourhoods, people are expected to prefer walking or 

cycling, so e-bikes are more likely to substitute for green transport modes than cars in 

those areas. In which urban built environments will the development of e-bike sharing 

be more effective in reducing carbon emissions has not been explored. 

 

To bridge these two knowledge gaps in the literature, we use China, one of the largest 

e-bike sharing markets in the world, as the case study. Using complete daily trip-level 

shared e-bike data from one of the largest shared micro-mobility companies in two 

provincial cities (Chengdu and Kunming) in China, this study investigates the net effect 

of adopting shared e-bikes on urban carbon emissions, after considering their 

substitutions for alternative commuting modes. We first present a travel mode 

substitution model to identify the changes in commuting modes due to the introduction 

of shared e-bike services and quantify the corresponding changes in carbon emissions 

per trip. Then we analyse the correlations between these changes in carbon emissions 

and the urban features, to reveal what kind of places contribute to the carbon reduction 

effect of shared e-bikes. We find that, on average, shared e-bikes result in a decrease in 

carbon emissions by 80–150 grams per trip, compared to the substituted modes. 

Assuming 0.18 million e-bike trips in a city per day, this amounts to a reduction in 

carbon emissions by 14–27 tonnes. More importantly, the reduction effect is much 



5 
 

stronger in underdeveloped non-central areas with lower building density, less diverse 

land use, and lower accessibility, potentially because shared e-bikes in these regions are 

more likely to replace transport modes that rely on fossil energy. This study provides 

advice for government and businesses to deploy shared e-bikes and to improve the 

cycling infrastructure in suitable locations.  

2. Literature review 

Transportation is acknowledged as one of the most important contributors to 

greenhouse gas emissions, accounting for nearly a quarter of total emissions and rising 

annually (IPCC, 2014; IEA,2020). Due to the high carbon emissions from the 

unsustainable transport modes that rely on fossil energy, green changes in people's 

travel behaviour may have a positive environmental impact on sustainable cities. The 

booming of shared micro-mobility is regarded as a potential contributor to the 

behaviour change of car-dependent lifestyles and carbon reduction (Cao & Shen, 2019; 

Cerutti et al., 2019; Jones et al., 2016; McQueen et al., 2019). Bike sharing, as an earlier 

form of shared micro-mobility system, has developed for more than half a 

century(Wang & Sun, 2022). From the first bike sharing system in Amsterdam(DeMaio, 

2009; Ploeger & Oldenziel, 2020) to the emergence of e-bike sharing on the streets 

around the world (Galatoulas et al., 2020), the development of shared micro-mobility 

has made it more convenient for human mobility and activities.  

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/greenhouse-gas-emission
https://www.sciencedirect.com/science/article/pii/S0959652618313520#bib16
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Shared e-bikes combine the merits of shared bikes and electric vehicles and present the 

potential to change travel behaviour (Winslott Hiselius & Svensson, 2017). Compared 

to bikes, e-bikes can travel higher speeds with less physical effort (Cherry, 2007; 

Popovich et al., 2014), travel for longer distances, and climb slopes easily (Allemann 

& Raubal, 2015; Dill & Rose, 2012). Unlike conventional bikes which mainly aim to 

resolve the last-mile connectivity problem only, e-bike sharing trips also have the 

potential to become an alternative to short- and medium-distance car trips (Haustein 

and Moller, 2016; Moser et al., 2018; Ioakimidis et al., 2016). Compared to car trips, 

an e-bike sharing trip is cheaper, takes up less space, is less affected by traffic 

congestion (Wamburu et al., 2021), and has a higher energy efficiency level (Berners-

Lee, 2021; Weiss et al., 2015). In China, the price of riding a shared e-bike is as low as 

using public transit, costing only CNY 2 (GBP 0.228) per half hour. Studies in several 

Chinese cities have suggested that e-bikes can be an affordable alternative to public 

transit (Cherry & Cervero, 2007; Montgomery, 2010; Cherry et al., 2016). As a shared 

mobility method, people can use shared e-bikes in the short term according to their 

spontaneous travel needs (Machado, et al., 2018; Shaheen, et al.,2015). It is estimated 

that there will be 8 million shared e-bikes in China by 2025 (Aurora Mobile, 2021). 

2.1 Estimating the carbon reduction potential  

The popularity of e-bike sharing has also triggered discussions on its role in the 

sustainable development of cities, especially in carbon emission reduction. Most studies 
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have explored the environmental benefit of bike sharing (D’Almeida et al., 2021; 

Fishman et al., 2014; Kou et al., 2020; Wang & Sun, 2022). However, for e-bike sharing, 

knowledge about the environmental impact of this emerging micro-mobility mode is 

scarce. Although for-profit companies assert that e-bike sharing can reduce carbon 

emissions (Hellobike, 2021), scholars have not reached a consensus that shared e-bikes 

have an environmental benefit. Whether developing e-bike sharing services has a net 

positive effect on reducing carbon emissions depends on what modes of transportation 

they have substituted for. Based on a meta-analysis of published articles from China, 

Europe, North America, and Australia, Bigazzi & Wong (2020) reported that the highest 

proportion of alternative transport modes replaced by e-bikes is public transit (33%), 

followed by bikes (27%), cars (24%) and walking (10%), and this result varies across 

different countries. The carbon emissions of e-bikes are higher than conventional bikes, 

slightly lower than public transit, and much lower than cars(McQueen et al., 2020). 

Therefore, to quantify the net impact of e-bike sharing on carbon emissions, the first 

step is to understand what transportation modes are more likely to be replaced by shared 

e-bikes. 

 

Some studies stated that e-bikes, as a promising carbon-efficient alternative to cars, 

have the potential to reduce carbon emissions by changing unsustainable travel habits 

(Haustein & Moller 2016; Winslott Hiselius & Svensson 2017; Harvey & Guo, 2018; 

Moser et al.,2018). It has been found that car trips are the main mode replaced by e-
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bikes in North America and Australia (MacArthur et al., 2014, 2018; Johnson & Rose, 

2013). Mcqueen et al. (2020) stated that e-bikes reduced the share of car trips in all 

journeys by about 10 percentage points and lowered carbon emissions by 225 kg per 

year in North America. Some researchers estimated the car kilometers substituted by e-

bikes amongst surveyed users (Cairns et al., 2017; Moser et al., 2018). Bucher et al. 

(2019) simulated the reduction in greenhouse gas emissions by e-bikes under different 

transportation and weather scenarios, based on car trip information. The study found 

that the reduction of emissions could reach up to about 10% of the overall greenhouse 

gas emissions in Switzerland. In the summarised study of Berjisian & Bigazzi (2019), 

the net carbon reduction per e-bike in use was estimated at around 460 kg p.a,  

 

However, some studies have challenged the green mode shift effect of e-bike trips. In 

the Netherlands e-bikes have only significantly reduced conventional bicycle trips, and 

not the other transport modes like cars, thereby bringing adverse effects (De Haas et al., 

2022); Jones et al., 2016). Bieliński et al. (2021) pointed out that shared e-bikes have a 

significant substitution effect for public transport instead of car trips in Tricity, Poland. 

Sun et al. (2020) found that e-bikes substitute more conventional bike use than car use 

in Netherland, but they still have a net gain in environmental sustainability, because the 

share of bike kilometers is significantly smaller than that of cars.  

 

So far, the empirical findings about the environmental potential of shared e-bikes are 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-impact-assessment
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mixed in different urban contexts. Existing studies have mainly used simulations and 

surveys to explore the behaviour change and environmental potential of shared e-bikes. 

The most common method is the intercept survey-based method (Cairns et al., 2017; 

Cherry et al., 2016; Fyhri et al., 2017; Lin et al., 2017; Mcqueen et al. 2020; Moser et 

al., 2018). The arguments are based on a similar question: “If the target mode (e.g., 

shared bike or e-bike) was unavailable, what kind of transportation would you choose?” 

The findings of these surveys show diverse results of the substitution effects, which 

vary according to their different questionnaire design, sampling rules, and local 

contexts. Due to limitations of questionnaire sample size on the analysis of individual 

systems, samples could not be fully representative of the overall users (Fukushige et al., 

2021; Kou et al., 2020), which may cause bias and validity problems for the analysis of 

net carbon emissions changes attributable to shared e-bikes. 

2.2  Conditions for shared  e-bikes to be successful 

The relationship between environmental potential and shared e-bikes depends on 

people’s travel substitution choices, so the factors affecting the travel choice are worth 

to be identified in another line of research. Land use is the most crucial factor in travel 

choice. In the early research, Cervero & Kockelman (1997) proposed the ‘3D’ elements 

– density, diversity, and design – and demonstrated that high-density, diverse land uses 

and road network design helped to reduce the commute frequency, as well as reduce car 

travel, and thus reduce carbon emissions. Furthermore, Cervero (2002) put forward the 
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‘5D’ elements – density, diversity, design, distance to transit, and destination 

accessibility. Ewing & Cervero (2010) added another two ‘Ds’, demand management 

and demographics, to compose a ‘7D’ concept, but this is less related to the attribute of 

land use. Density is the essential variable. Boarnet et al. (2008) found that in a higher 

density region, citizens prefer to walk, especially in a high-density retail area, 

contributing to carbon reduction. Moilanen (2010) found that employment density was 

proportional to non-car transport choices. Diversity is another important factor. Peng 

(1997) indicated that the job-housing rate had a U-shaped relationship with car travel 

distance per capita, meaning that the job-housing balance could reduce car usage and 

bring environmental benefits. Frank et al., (2008) also found that road connectivity and 

land use mixed degree promoted the probability of walking.   

 

As for the factor influencing bike sharing behaviour, although extensive studies have 

explored the influence of the built environment, weather, environment, and other factors 

on bike usage(Eren & Uz, 2020; Mattson & Godavarthy, 2017; Nankervis, 1999; 

Spencer et al., 2013; Winters et al., 2010), but few studies specifically address factors 

influencing the environmental potential of e-bikes. Fukushige et al. (2021) found that 

long e-bike sharing trips and trips originating from non-commercial areas have a higher 

propensity to reduce car use, while trip distances less than 1mile are more likely to 

replace walking, according to a survey in Sacramento. Sun et al. (2020) showed that e-

bike riders would be more likely to substitute cars in less urbanized areas. From the 
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disaggregated perspective, what kind of geospatial context in which the future 

placement of e-bikes will enhance their environmental benefits is still unclear. 

3. Research Strategy 

Ascertaining the carbon emissions reduction potential of shared e-bikes involves the 

construction of a valid counterfactual. In other words, if there were no shared e-bike 

available for a trip, what alternative mode would a traveller choose? Fig. 1 illustrates 

the stepwise procedure of our empirical analysis. Firstly, according to the key indicators 

mentioned in previous studies, such as distance, time, and transit coverage of a trip, a 

travel mode substitution model is established to simplify the complex problem of 

substitution and to make it measurable. Four potential substituted modes (driving, 

public transit, walking and cycling) are included in our analysis.  

       

Fig. 1. Carbon emissions modelling steps for shared e-bikes. 
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The distance and duration of route of each trip can be crawled using the Google map 

developer platform API by inputting the time, origin, and destination (OD) coordinates 

of each e-bike sharing trip (Fig. 2). In terms of the information available on potential 

substituted transportation modes, we crawled the duration and distance of alternative 

modes for the same OD locations via Google Maps API, and retrieved information 

about whether the OD locations lie within the coverage of public transit. The above 

information can be used in the travel mode substitution model to measure which mode 

is more likely to be replaced by a given shared e-bike trip, and to hence estimate the net 

carbon emissions change. The net carbon emissions reduction effect of e-bike sharing 

in a place depends on the different substituted combinations. How much net carbon 

emissions are reduced or increased by shared e-bikes substituting for other 

transportation modes can be calculated by multiplying by the carbon emissions 

coefficient of each substituted mode. The change in net carbon emissions of each trip 

with its origin in the grid are aggregated to the same grid. Finally, impact analysis 

models are built to unpack the urban features that influence the carbon emissions 

reduction effect of shared e-bikes. The net carbon emissions per trip in each grid are 

put into the models as the Y variable. Land-use variables of each grid, like density and 

diversity, are put into the models as X variables.  
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Fig. 2. The process of crawling potential substituted mode information from the Google Map developers API. (The 

base map is from Google map)  

3.1 Travel mode substitution model  

This section estimates the substitution of individual e-bike trips for other modes based 

on the distance, time, and transit coverage of the trip. The method is designed to identify 

the mode of transportation with the highest probability of being replaced or 

complemented by a shared e-bike trip (Fig. 3).  

 

Firstly, trip distance is a  determining factor for measuring the choice of different travel 

modes (Fig. 4) (De Sá et al., 2015; Ermagun & Samimi, 2018; Fitch et al., 2021; Kim 

et al., 2020; Kong et al., 2020; Lee et al., 2021). For example, if a trip taken by e-bike 

has a significantly long distance, the motivation to replace a bike trip with an e-bike 

ride will be lower than replace a car trip. For the relationship between non-motorised 

travel and motorised travel, Zhang and Mi (2018) set a threshold (e.g.,1 km) for the trip 

distance: if the distance is less than the threshold, people prefer to choose walking or 

cycling as an alternative; if above the threshold, people are inclined to choose a 
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motorised trip, because for long trips, travellers would have taken a taxi or private car. 

This paper sets the first threshold (Dt1) based on the relationship between the distance 

and frequency of various transportation means in the empirical data. (In the robustness 

section, we will also test the sensitivity of results to alternative thresholds.) For trips 

with a travel distance (D) lower than the first threshold (Dt1), we assume that people 

will be more likely to choose non-motorised modes, such as walking or cycling. This 

paper sets 500 m as the threshold (Dt2) of a comfortable walking distance (Gehl and 

Koch, 2011; Li et al., 2019) to distinguish walking and cycling. Most walkers feel tired 

when they walk further than 500m (Gehl and Koch, 2011).  

 

For trip distances (D) above the first threshold (Dt1), people are more likely to choose 

motorised modes, such as cars or public transit. The accessibility of public transit is a 

critical aspect affecting people’s choices (Liao, 2021). This paper combines the method 

of the substitution relationship between public transit and cars in Kong et al. (2020), 

using transit coverage of the trip to distinguish between public transit and driving. The 

transit coverage analysis includes two steps: spatial coverage and temporal coverage. 

In transit spatial coverage analysis, if both the trip origin and destination (OD) are 

within the buffer of transit stops, then the areas are considered to be accessible for a 

transit trip. Previous studies have usually set the buffer to 400 m, as the comfortable 

distance for people to walk to transit stops (Demetsky and Bin-Mau Lin, 1982; Hawas 

et al., 2016). If the conditions for spatial coverage are met, we consider the temporal 
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coverage. Different transit stops have different operation times. If users have to wait for 

a long time, they may not choose transit for the trip. The paper set 30 minutes as the 

travel time difference threshold (Tt) of public transit and car trips, in line with the time 

difference parameter measured in Kong et al. (2020). If there is no transit available 

within a given spatial buffer and temporal coverage, people will choose to use the car, 

otherwise, they will choose public transit. Besides spatial and temporal coverage, the 

service quality of public transit also affects people’s choices. Many aspects determine 

service quality, such as safety, crowdedness, privacy, etc. It is important to note that 

data on service quality is not available, hence our study does not take this unobserved 

factor into account, at least not explicitly. 

 

 

Fig. 3. Travel mode substitution model 
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Fig. 4. The conceptual relationship between travel distance and frequency of different travel modes 

3.2 Carbon emissions analysis 

To analyse net carbon emissions changes, we develop a comprehensive measure of 

different substitution combinations. Taking the carbon analysis of a 100*100m grid 

sample as an example (Fig. 5), and assuming that 10 e-bikes launch their trips from that 

specific origin (the white grid), the paper will first use the method described in section 

3.1 to infer which transport mode has been replaced by each e-bike trip. We will then 

take the carbon emissions parameters (Table 1) of the substituted transport mode and 

multiply it by the distance by the corresponding mode crawled from the map API. 

Finally, we will subtract the carbon emissions generated by shared e-bikes from the 

carbon emissions generated by the replaced original mode trips to obtain the change in 

net carbon emissions. The specific formula designed in the paper is as follows: 
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Fig. 5.  A grid sample for measuring the net carbon emission 

 

𝐸𝐸𝑖𝑖 = � 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∑ 𝐷𝐷𝑑𝑑 +𝑎𝑎
𝑑𝑑=1 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∑ 𝐷𝐷𝑡𝑡 + 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝐷𝐷𝑓𝑓 

𝑐𝑐
𝑓𝑓=1

𝑏𝑏
𝑒𝑒=1 � − 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∑ 𝐷𝐷𝑗𝑗 

𝑛𝑛
𝑖𝑖=1  (1)    

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑝𝑝 · 𝜌𝜌                                                                                                            (2)    

 

where 𝐸𝐸𝑖𝑖 represents the total carbon emissions reduction of shared e-bikes in spatial 

grid i, n is the number of e-bike sharing trips originating in grid area i, a is the number 

of substituted car trips, b is the number of substituted public transit trips, and c is the 

number of substituted active mode trips (walking or cycling). If 𝐸𝐸𝑖𝑖 is greater than zero, 

it means that shared e-bikes starting within this grid, decrease the carbon emissions and 

have a positive impact on the environment. If 𝐸𝐸𝑖𝑖 is almost equal to zero, it means that 

shared e-bikes have no environmental benefit. If 𝐸𝐸𝑖𝑖 is less than zero, it means shared 

that e-bikes have a negative effect on the environment. For trips with the same origins 

and destinations, the distances travelled by cars, buses and bikes may not be the same.  

 

Table 1. Carbon emission parameter. 

Mode Carbon emission 
parameter 

Value Unit Reference 

Car 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  223.9 g CO2/P·km (Zhang & Mi, 2018)  

Public 
Transit 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  26.0 g CO2/P·km (Yang & Zhou, 2020)  

E-bike 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  4.9 g CO2/mile (McQueen et al.2020)  

Walking/bike 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    0 g CO2/P·km (Mcqueen et al., 2020)  
(Zhang & Mi, 2018)  

 

When calculating carbon emissions, the travel distance of each transport mode is based 
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on the real route distance crawled by Google API, rather than the straight-line Euclidean 

distance of OD points, to improve the accuracy of the calculation. The definitions of 

other variables are as below:  

 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 : per kilometre carbon emissions parameter of a car trip (g CO2/P·km ) 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 : per kilometre carbon emissions parameter of public transit (g 

CO2/P·km) 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎   : per kilometre carbon emissions parameter of walking or cycling (g 

CO2/P·km) 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 : per kilometre carbon emissions of a shared e-bike trip (g CO2/P·km) 

𝐷𝐷𝑗𝑗  : distance of trip j by a shared e-bike (km) 

𝐷𝐷𝑑𝑑  : distance of trip d by driving (km) 

𝐷𝐷𝑡𝑡  : distance of trip t by public transit (km) 

𝐷𝐷𝑓𝑓 : distance of trip f by walking/cycling (km) 

p : Petrol consumption per unit of distance travelled (L/km) 

ρ : The density of petrol (kg/L) 

3.3 Modelling the impact  of carbon emission changes 

To explore the interaction between urban structure and the carbon reduction effect of 

shared e-bikes, this paper takes land use, accessibility, and socio-economic factors into 

account, based on land use-transport interaction theories (Wegener and Fuerst. 1999). 
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We develop an empirical regression model where the dependent variable is the average 

net carbon emissions of all trips originating from each 100*100 m grid. We regress such 

measure on the independent and control variables listed in Table 2. We first use a simple 

ordinary least squares estimator (OLS), and then a more complex Spatial Durbin Model 

(SD) to avoid errors caused by spatial interdependence between carbon emissions 

reduction effect of shared e-bikes and the spatial lags of both the outcome and urban 

features. The spatial lag regression formula is listed as follows: 

 

𝑦𝑦𝑖𝑖 =  log (𝐸𝐸𝑖𝑖
𝑁𝑁𝑖𝑖

)                                                              (3) 

                                    𝑦𝑦𝑖𝑖 = 𝜆𝜆𝒘𝒘𝑖𝑖 𝒚𝒚 + 𝒙𝒙𝑖𝑖 𝜷𝜷 +  𝒘𝒘𝑖𝑖 𝑿𝑿𝜽𝜽 + 𝜀𝜀𝑖𝑖                     (4) 

 

where 𝑦𝑦𝑖𝑖 represents the net carbon emissions per trip in spatial unit i in log form, and 

𝑁𝑁𝑖𝑖 is the total number of e-bike sharing trips in grid area i. When 𝑦𝑦𝑖𝑖 is above zero, this 

means that the shared e-bikes reduce the carbon emissions in unit i; otherwise, the net 

carbon emission in unit i increases. 𝑤𝑤𝑖𝑖  is the spatial weights vector, and the 

neighbourhoods are based on the rule of Queen’s case. 𝜆𝜆 is the spatial lag coefficient of 

y, and 𝜽𝜽 is the vector of coefficient of 𝒙𝒙𝒊𝒊. 𝒙𝒙𝒊𝒊 is the collection of independent variable j, 

including land use characteristic, accessibility and economic activity level, and control 

variables, including population density, average trip duration and the utilization 

efficiency of shared e-bikes, which is calculated as the count of trips divided by the 

count of shared e-bikes in grid i. X is the matrix of explanatory variables and 𝜽𝜽 is a 
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vector of parameters. 𝜀𝜀 indicates the unobserved error.  

 

It is well documented in the extant literature that the built environment shapes travel 

behaviours and vice versa (Ewing & Cervero, 2010). In this paper, four measures are 

used to describe the built environment: land use diversity, land use intensity, road 

density, and the number of public transit stations and stops. Land use intensity is 

measured by the floor area ratio (FAR). The road density index is represented by the 

reciprocal of block size. For the socio-economic aspect, this paper uses the night light 

index as a proxy of the economic activity level of areas. When an area has a high night 

light index, this generally indicates there are a lot of commercial activities, relatively 

high economic income, and development. Many studies have found a closer connection 

between light and economic activity (Mellander et al., 2015). The land diversity level 

is calculated by the degree to which there is a mixture of diverse POI types. Generally, 

the diversity level can be presented by the Shannon entropy index (Shannon, 1948), 

which can be formulated follows: 

 

D = − ∑ ℎ𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 ℎ𝑗𝑗 
𝑐𝑐
𝑗𝑗 ,        (5) 

 

where D is the entropy index, which range from 0 to 1. ℎ𝑗𝑗 is the proportion of the jth 

type of normalized POI, and n is the number of categories. A value of 1 represents 

extreme diversity of land function, whereas a value of 0 indicates there is only one type 
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of POIs in specific unit. 

Table 2 Descriptive statistics. 

 Mean Std dev Min Max 
Dependent variables     

The net carbon emissions reduction per trip in each grid 165.8
7 

264.72 -4.87 3289.25 

Independent variables     
Land use characteristic Land use diversity 0.63 0.29 0 1.10 

 Land use intensity 1.46 1.46 0 18.43 
Accessibility 

 
Road density index 10.34 18.72 0.04 193.67 

 Counts of public transit 
stations and stops  

0.71 1.35 0 6 

Economic activities Nighttime light index 29.04 13.76 3.47 77.02 
Control variables     

Population density (X 10000 per m2) 71.16 41.31 0 203.75 
The utilization efficiency of shared e-bikes  
(Counts of trips /Counts of shared e-bikes) 

1.05 0.06 1.00 2.00 

Average trip duration (in minutes) 12.69 4.78 3.19 135.23 

4. Data and study area 

China has the largest number of shared e-bikes in the world. After the dockless shared 

bike race that took China by storm from 2016 to 2018, many tech companies are now 

betting on a similar yet different business: e-bikes (Krasia, 2020). Electric bike-sharing 

systems emerged in 2017 and rose to prominence after 2019. From 2019 to 2022 there 

has been a rapid development period for shared e-bikes. Due to policy restrictions in 

most of the big cities in China, shared e-bikes mainly operate in small cities and 

counties. Kunming and Chengdu are among the few big cities where government 

policies encourage the use of shared e-bikes. This paper chooses the urban main area 

of Kunming and three sub-centre districts of Chengdu (Fig. 6) as the study area ( shared 

e-bike systems were launched in Pidu, Wenjiang and Shuangliu districts, and were not 
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allowed to launch in the city centre of Chengdu). Kunming has a population of over 5 

million people, and the three sub-centre districts of Chengdu have a population of over 

2.5 million people. 

 

Fig. 6. The study area and spatial distribution of origins of shared e-bike trips in (a) Kunming and (b) Chengdu (The 

base map is from satellite map of Google and the dataset is from Meituan). 

Compared to previous studies based on traditional survey data analysis (Cherry et al., 

2016; Lin et al., 2017), this paper analyses the carbon emissions reduction effect of 

shared e-bikes based on big data analysis. The e-bike sharing trip data is the most 

important input in this study. Data from 4 million recorded trips are collected in two 

cities, including user attributes (user id, gender, and age), trip attributes (start and stop 

time, date, and location) and bike id (Table 3). The time span of the data covers two 

weeks in March 2021. All users are anonymous so that privacy is protected. Bike-

sharing trip data was also collected in 2020 and Taxi trip data in 2018 from Meituan 
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and DIDI companies, to analyse the difference in distance distributions between cycling 

and driving, which could give reference for the distance threshold setting in the travel 

mode substitution model. 

Table 3. Example of e-bike sharing trip records. 

Order 
id 

City  Date User 
id 

Bike 
id 

Gender Age Register 
date 

Origin 
(X,Y) 

Destination 
(X,Y) 

Start 
Time 

End 
Time 

Trip 
No. 1 

Kunming 2021-
03-02 

8979 7865 Female 28 2020-
08-02 

25.02, 
102.42 

24.32, 
102.13 

12：

50 

13：

02 

5. Results  

To explore whether shared e-bikes reduce carbon emissions and in what kind of urban 

context shared e-bikes are more effective at reducing carbon emissions, we analysed 

the competition between potential substituted travel modes by shared e-bikes, the 

spatial patterns of the changes in net carbon emissions attributable to shared e-bikes, 

and the impacting factors with a view towards choosing the optimal deploying strategy 

for shared e-bikes to boost reductions in carbon emissions. Hence, our analysis focuses 

on the impact of the urban features of starting locations on the carbon emissions 

reduction effect of shared e-bikes. 

5.1 Mode substitution  

Shared e-bike trips with a distance longer than 10 km or a duration longer than 3 h were 

deleted. After data cleaning, there were 2,463,596 trips in Kunming and 1,322,749 trips 

in Chengdu. Fig. 7 shows the relationship between the time and distance of using other 
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travel modes with the same starting and ending points as the e-bike sharing trips, by 

crawling data from Google API. Based on the travel duration and frequency distribution 

of transportation modes over different distances, the competition between different 

travel modes lies mainly in the distance interval from 1 km to 3 km. We use the distance 

frequency of shared bikes and taxis to represent the distance frequency of bikes and 

cars (Fig. 8). The average trip distance of shared e-bike trips was 2.24 km, and the travel 

distance overlaps the trip distance range of bikes and cars. A travel distance of around 

1600 m is a critical value. When the distance is less than 1600 m, the probability of 

people using non-motorised tools such as bikes is higher; when the distance is longer 

than 1600 m, the probability of people using motorised vehicles such as cars is higher. 

Therefore, this paper initially set 1600 m as the threshold (Dt1) in the travel mode 

substitution model. To make the result more convincing, the following sensitivity 

analysis has been conducted under different threshold parameters in the travel mode 

substitution model. 

  

Fig. 7. Travel duration of different transportation means regards to different travel distances (The data is crawled 

from Google map developer platform API)  
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Fig. 8. Travel frequency of bikes, cars and shared e-bikes with regards to different travel distances (The data is from 

Meituan and DiDi).     

5.2 Spatial patterns of emission changes 

The result from the travel mode substitution model shows that in Kunming 5.5% of e-

bike sharing trips replaced walking, 41.0% of the trips replaced bike trips, 43.4% 

replaced public transits, and 10.1% replaced car trips, while in Chengdu the percentage 

of shared e-bike trips that replaced walking, bicycles, buses, and cars was 6.1%, 40.6%, 

43.3%, and 10.0%, respectively. The proportion of e-bikes substituting for other modes 

of transportation is similar between the two cities and the average net emissions 

reduction per trip is 121 g. Although a larger proportion of e-bike sharing trips substitute 

green modes than high carbon emission vehicles, the net emissions are reduced. This is 

because the travel distances of shared e-bike trips that replace cars are longer than those 

of the trips replacing low carbon modes, such as walking or cycling, and shared e-bikes 

themselves are a low-carbon transportation mode and the carbon emission parameter is 

small. Therefore, the emissions reduced by replacing one car trip are far greater than 

the emissions increased by replacing one bike/walking trip.  
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The net carbon emissions change of Kunming and Chengdu has been measured based 

on the result of the travel mode substitution model. To better understand the impact of 

the location of e-bike sharing trips on the net emissions, we analysed the spatial patterns 

of net emissions changes. We allocated the carbon emissions of each trip to its start 

point (since the origin of a trip generally reflects the demand for travel and provides the 

location information of where to deploy the shared e-bikes); the net carbon emissions 

of these start points were merged into the centre of the 100*100 m grid and the centre 

of the 500*500 m grid to plot the carbon emissions changes by origin centre points on 

the maps (Fig. 9, Fig. 10).  

 

The carbon emissions reduction effect of shared e-bikes exhibits significant spatial 

heterogeneity. The spatial pattern of net emissions at the 100*100 m level is relatively 

complex and not intuitive, so we also plotted net emissions at the 500*500 m level. In 

the map, the higher the net CO2 emission reduction, the colder the colour, and orange 

represents the increase in CO2 emissions attributable to shared e-bikes. It can be 

observed that e-bike sharing does not decrease carbon emissions everywhere, but 

increases CO2 in certain places. In 86% of spatial grids, the launch of shared e-bikes 

could help to reduce carbon emissions. Shared e-bike trips in non-central areas 

decreased more emissions than in central areas. The relationship between the typical 

urban features of shared e-bike placement and net carbon emissions is explored in the 

following analysis. 
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Fig. 9. The spatial distribution of carbon emissions reduction per trip in Kunming (The base map is from satellite 

map of Google and the data comes from the analysis of the raw e-bike sharing trip records).   

 

Fig. 10. The spatial distribution of carbon emissions reduction per trip in Chengdu (The base map is from satellite 

map of Google and the data comes from the analysis of the raw e-bike sharing trip records). 

5.3 Which built environments are conducive to carbon emission 

reductions?  

To explore the relationship between features of the built environments and reductions 

in the carbon emissions attributable to shared e-bikes, we regress the impact of land use, 
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accessibility, and socioeconomic factors on the changes to net carbon emissions 

attributable to e-bike sharing. Regarding the results of the OLS model, the coefficients 

of land-use diversity, land-use intensity, road density, public transport stops, and 

economic activities are all significantly negative in both cities (cf. Table 4). This 

indicates that places with single land use function, low land-use intensity, low 

accessibility and low economic level, such as the suburbs of urban areas, could boost 

the carbon reduction effect of shared e-bike trips. To avoid errors caused by spatial 

interdependence, the study also uses Spatial Durbin Model to accommodate spatial 

dependence between carbon emissions reduction effect of shared e-bikes and the spatial 

lags of both the outcome and urban feathers. After considering spatial lags of variables, 

most fixed characteristics become insignificant, while many spatial lags of the 

explanatory variables are significant, indicating that these characteristics of adjacent 

areas affect the carbon emissions reduction effect. To be more specific, the spatial lag 

of land use diversity and public transport stops are significantly negative in both cities. 

The spatial lag coefficient of the land use intensity, economic activities, and road 

density are significantly negative in one city case, and insignificant in another one, 

indicating the dependence between carbon emissions reduction effect and these urban 

features of adjacent areas is unstable, with certain randomness. Among all variables, 

land use diversity and public transport facilities are the relatively stable determinants 

relating to the carbon emissions reduction effect of shared e-bikes. 
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This is potentially because when the function of a place is monotonous, and transport 

service facilities density is low, people need to travel long distances to meet the needs 

of daily life, and a long e-bike sharing trip are more likely to replace a previous car trip. 

At the same time, many characteristics of places often come together. Specifically, 

attributes like relatively low land use density are always accompanied by low road 

density, undeveloped public transport systems, and low economic level. People living 

in these areas may not be rich enough to afford private cars. The emergence of shared 

e-bikes provides more low-carbon travel options for people in these areas, so e-bike 

sharing is more likely to replace high-carbon vehicles in those areas. When the function 

of land use is relatively mixed, facilities like workplaces, residences, shopping, eating 

and entertainment areas are located around the neighbourhood. Most trips that occur in 

these areas are relatively short because residents can meet most of their needs travelling 

only a short distance. Thus, people may choose cycling or walking to reach their 

destination instead of cars. Therefore, e-bike sharing trips in places with highly mixed 

land use replace fewer cars than in places with single land function. These findings 

could potentially help the decision making about where to launch and deploy e-bike 

sharing systems. 

 

Table 4 Testing the correlation between features of the build environment and shared e-

bikes’ carbon emissions reduction: Regression results. 
 
 Dependent variable: Carbon Emissions Reduction 
  
 Kunming Kunming Chengdu Chengdu 

 OLS SD OLS SD 
 (1) (2) (3) (4) 
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Independent Variables 

Land Use Diversity -0.522*** -0.073 -0.477*** -0.060 
 (0.087) (0.101) (0.051) (0.070) 
     
Land Use Intensity -0.104*** 0.082* -0.105*** -0.003 
 (0.038) (0.049) (0.036) (0.045) 
     
Economic activity -0.335*** -0.082 -0.224*** 0.112 
 (0.065) (0.182) (0.026) (0.113) 
     
Public Transport -0.107*** -0.039 -0.220*** -0.028 
 (0.027) (0.031) (0.021) (0.029) 
     
Road Density -0.169*** -0.039 -0.049*** -0.001 
 (0.021) (0.026) (0.013) (0.017) 

Control Variables     
     
E-bike Utilization Efficiency 1.925*** 1.805*** 1.093*** 1.233*** 
 (0.403) (0.386) (0.155) (0.146) 
     
Trip Duration 0.142*** 0.133*** 0.065*** 0.059*** 
 (0.004) (0.004) (0.002) (0.002) 
     
Population  -0.108*** -0.005 -0.033*** -0.017 
 (0.020) (0.024) (0.010) (0.012) 
     
Lag Variables     

lag. Land Use Diversity  -0.605***  -0.331*** 
  (0.147)  (0.088) 
     
lag. Land Use Intensity  -0.199***  -0.099 
  (0.065)  (0.060) 
     
lag. Economic activity  -0.083  -0.225* 
  (0.194)  (0.116) 
     
lag. Public Transport  -0.087*  -0.186*** 
  (0.045)  (0.037) 
     
lag. Road Density  -0.147***  -0.032 
  (0.036)  (0.022) 
     
lag. E-bike Utilization Efficiency  -1.770**  -1.072*** 
  (0.790)  (0.259) 
     
lag. Duration  -0.010  0.0001 
  (0.008)  (0.004) 
     
lag. Population  -0.106***  -0.002 
  (0.032)  (0.016) 
     
Constant 3.339*** 3.870*** 3.909*** 2.777*** 
 (0.493) (0.974) (0.184) (0.305) 
      
Observations 4,360 4,360 7,226 7,226 

R2 0.256  0.171  
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Log Likelihood  -6,155.734  -10,030.270 

Akaike Inf. Crit. 12668.460 12,349.470 20968.460 20,098.550 
 
Note: *p<0.1, **p<0.05, ***p<0.01 

Economic activity is night light index in log form; Public Transport is public transport stops density in 

log form; E-bike Utilization Efficiency is the turnover rate of shared e-bikes; Population is population 

density in log form. 

5.4 Sensitivity analysis 

In the travel mode substitution model, the distance threshold between non-motorised 

travel and motorised travel may affect the carbon emission results so, in this section, 

we check the sensitivity of results to alternative distance threshold parameters (Dt1) in 

the substitution model (Fig. 3). As mentioned in the results, travel distances from 1 km 

to 3 km are the primary competition interval of different travel modes. When the travel 

distance of an e-bike trip is less than 1 km, the probability of the trip replacing 

motorised vehicles is low; when the travel distance is greater than 3 km, the probability 

of the trip replacing non-motorised vehicles is pretty small. Therefore, we set two 

extreme scenarios by using the lowest and the highest values of the competition interval 

as the distance thresholds to generate the lower and upper limits for the carbon 

emissions reduction effect of shared e-bikes. The lower limit for the carbon emissions 

reduction effect is the extreme situation in which all trips with distances below 3 km 

replaced non-motorised travel modes, and the upper limit occurs when all trips with 

distances above 1 km replaced motorised travel modes. This paper then conducts 

regressions separately to check whether the variables are still significant and have the 

same negative correlations under extreme scenarios. It is found that the average carbon 
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emissions reduction per trip lies between 80g (lower limit) to 150g (upper limit). 

Additionally, even based on the upper limit of distance threshold (3 km) or the lower 

limit (1 km), the variables mentioned above are still significantly negatively correlated 

with the carbon emissions reduction effect (Table 5). The findings of the sensitivity 

analysis make the results of the paper more convincing. 

 

Table 5 Testing the sensitivity of carbon emission results to alternative parameters. 

 Dependent variable: Carbon Emissions Reduction: 

 Dt1=1km Dt1=3km 

 Kunming Chengdu Kunming Chengdu 

 OLS OLS OLS OLS 

 (1) (2) (3) (4) 

Independent Variables 

Land Use Diversity -0.351*** -0.433*** -0.565*** -0.753*** 

 (0.073) (0.045) (0.137) (0.072) 

Land Use Intensity -0.125*** -0.074** -0.166*** -0.133*** 

 (0.032) (0.032) (0.059) (0.050) 

Economic activity  -0.150*** -0.191*** -0.453*** -0.255*** 

 (0.055) (0.023) (0.102) (0.037) 

Public Transport Stops -0.089*** -0.196*** -0.191*** -0.330*** 

 (0.022) (0.019) (0.041) (0.031) 

Road Density -0.127*** -0.037*** -0.210*** -0.110*** 

 (0.018) (0.011) (0.033) (0.018) 

Control Variables     

E-bike Utilization Efficiency 1.944*** 1.141*** 0.521 0.069 

 (0.324) (0.134) (0.614) (0.219) 

Trip Duration 0.102*** 0.050*** 0.170*** 0.088*** 

 (0.003) (0.002) (0.006) (0.004) 

Population -0.105*** -0.035*** -0.137*** -0.068*** 

 (0.016) (0.009) (0.030) (0.014) 

Constant 1.409*** 3.491*** 2.061** 3.455*** 

 (0.471) (0.224) (0.885) (0.356) 

 

Observations 4,360 7,226 4,360 7,226 

R2 0.196 0.149 0.248 0.212 
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Note: *p<0.1, **p<0.05, ***p<0.01 

Economic activity is night light index in log form; Public Transport is public transport stops density in 

log form; E-bike Utilization Efficiency is the turnover rate of shared e-bikes; Population is population 

density in log form. 

6. Conclusions and policy implications 

This is the first study, to the best of our knowledge, that analyses the potential carbon 

emissions reduction effect of shared e-bikes based on a large collection of shared e-bike 

trip data. In a sharing economy, e-bikes represent a new form of public transportation, 

and their potential for reducing emissions is worth exploring. In our study, we develop 

a travel mode substitution model to measure which mode is most likely to be substituted 

by shared e-bike trips, estimate the net carbon emissions change, and employ OLS and 

spatial lag models to explore how the environmental benefits of shared e-bikes can be 

boosted in which kinds of urban context. In terms of the proportion of replacement, 

shared e-bikes are more prone to reduce public transit and bike trips than car trips. 

However, the emissions reduction effect of shared e-bikes is stronger than the emissions 

increase effect resulting in a net reduction following the introduction of shared e-bikes.. 

On average, shared e-bikes result in a reduction in carbon emissions by 80–150 grams 

per trip. Assuming 0.18 million e-bike trips made in a city per day, this amounts to a 

reduction of carbon emissions by 14 tonnes–27 tonnes.  

 

Regarding the spatial distribution of carbon emissions, although e-bike sharing reduces 
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carbon emissions overall, it still increases carbon emissions in some urban contexts, 

such as places with mixed and compact land use and easy accessibility. Therefore, when 

planning the spatial coverage of e-bike sharing schemes, areas characterised by, single 

land use, low density, low income and poorer public transit service should be prioritised 

for launching shared e-bike schemes. However, these areas are likely to be less 

profitable and less feasible if shared e-bike schemes are to be run in a for-profit manner.  

 

Our results provide a reference for policy makers to promote the substitution of cars 

and inhibit the substitution of active travel by shared e-bikes. Nowadays, it is still 

controversial whether cities should allow the entry of shared e-bikes. Some big cities 

in China, like Beijing and Guangzhou, have forbidden the usage of shared e-bikes 

because of safety issues, while some cities like Kunming allow them. Chengdu forbids 

the usage of shared e-bikes in the urban centre, but permits them in the suburb. Places 

that will benefit from shared e-bikes could be identified from the perspective of 

reducing net carbon emissions. The corollary of this study for government and 

businesses for managing e-bike sharing schemes is that they need to be deployed in 

suitable locations with appropriate cycling infrastructure, especially in suburbs.  

 

Although this study develops an innovative and quantitative calculation of the carbon 

emissions reduction effect of shared e-bikes based on big data analysis, there are some 

limitations. First, this study estimates the emissions change primarily based on the 
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shared e-bike trip dataset, and does not take into account the potential complementary 

effect on public transit and bikes, and the indirect substitution of cars by facilitating 

public transit in the last-mile connection, when calculating the net carbon emissions 

estimation. Secondly, the paper calculates the carbon emissions changes during the use 

of shared e-bikes, and does not consider the whole life-cycle carbon emissions of shared 

e-bikes, such as fleet manufacturing. Thirdly, shared e-bikes may be likely to save 

additional carbon emissions compared to a scenario where people would make these 

trips with private e-bikes. Fourthly, this paper has focused on the spatial heterogeneity 

of the carbon emissions of shared e-bikes, and did not analyse the changing 

characteristics of carbon emissions over time during a day. When the relevant data 

sources become available, such as the combination of survey data about the travel 

choice of citizens under different situations, a more accurate analysis will be carried 

out. Subsequent studies might explore the carbon emissions reduction effect of shared 

e-bikes in more depth, to further unravel the impact of shared e-bikes on carbon 

emissions. These discussions may make the findings more comprehensive and give 

more precise policy and business implications. 

 

Reference 

Aurora Mobile (2021). https://www.jiguang.cn/reports/536  

Allemann, D. , & Raubal, M. (2015). Usage Differences Between Bikes and E-bikes. 

https://www.jiguang.cn/reports/536


36 
 

Springer International Publishing. 

Berjisian, E., Bigazzi, A., (2019). Summarizing the impacts of electric bicycle 

adoption on vehicle travel, emissions, and physical activity. REACT Research on 

Active Transportation Lab. University of British Colombia. 

Berners-Lee, M. (2021). There Is No Planet B: A Handbook for the Make Or Break 

Years - Updated Edition. Cambridge University Press. 

Bieliński, T., Kwapisz, A., & Ważna, A. (2021). Electric bike-sharing services mode 

substitution for driving, public transit, and cycling. Transportation Research Part 

D: Transport and Environment, 96, 102883.  

Bigazzi, A., & Wong, K. (2020). Electric bicycle mode substitution for driving, public 

transit, conventional cycling, and walking. Transportation research part D: 

transport and environment, 85, 102412. 

Boarnet, M. G., Greenwald, M., & McMillan, T. E. (2008). Walking, Urban Design, 

and Health: Toward a Cost-Benefit Analysis Framework. Journal of Planning 

Education and Research, 27(3), 341–358.  

Bucher, D. ,  R  Buffat,  Froemelt, A. , &  Raubal, M. . (2019). Energy and greenhouse 

gas emission reduction potentials resulting from different commuter electric 

bicycle adoption scenarios in switzerland. Renewable & Sustainable Energy 

Reviews, 114(OCT.), 109298.1-109298.11. 

Cairns, S., Behrendt, F., Raffo, D., Beaumont, C., & Kiefer, C. (2017). Electrically-

assisted bikes: Potential impacts on travel behaviour. Transportation Research 



37 
 

Part A: Policy and Practice, 103, 327–342.   

Cao, Y., & Shen, D. (2019). Contribution of shared bikes to carbon dioxide emission 

reduction and the economy in Beijing. Sustainable Cities and Society, 51, 

101749. https://doi.org/10.1016/j.scs.2019.101749 

Campbell, A. A., Cherry, C. R., Ryerson, M. S., & Yang, X. (2016). Factors 

influencing the choice of shared bicycles and shared electric bikes in Beijing. 

Transportation Research Part C: Emerging Technologies, 67, 399–414. 

https://doi.org/10.1016/j.trc.2016.03.004 

CBInsights (2020).The Micromobility Revolution: How Bikes And Scooters Are 

Shaking Up Urban Transport Worldwide. 

https://www.cbinsights.com/research/report/micromobility-revolution/ 

Cerutti, P. S., Martins, R. D., Macke, J., & Sarate, J. A. R. (2019). “Green, but not as 

green as that”: An analysis of a Brazilian bike-sharing system. Journal of Cleaner 

Production, 217, 185–193. https://doi.org/10.1016/j.jclepro.2019.01.240 

Cervero, R. (2002). Built environments and mode choice: Toward a normative 

framework. Transportation Research Part D: Transport and Environment, 7(4), 

265–284. https://doi.org/10.1016/S1361-9209(01)00024-4 

Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, 

and design. Transportation Research Part D: Transport and Environment, 2(3), 

199–219. https://doi.org/10.1016/S1361-9209(97)00009-6 

Cherry, C., Cervero, R.: Use characteristics and mode choice behaviour of electric 

https://www.cbinsights.com/research/report/micromobility-revolution/
https://doi.org/10.1016/j.jclepro.2019.01.240


38 
 

bike users in China. Transp. Policy 14(3), 247–257 (2007). 

https://doi.org/10.1016/j.tranpol.2007.02.005 

Cherry, C.R., Yang, H., Jones, L.R., He, M., 2016. Dynamics of electric bike 

ownership and use in Kunming, China. Transp. Policy 45, 127–135. 

https://doi.org/10.1016/j.tranpol.2015.09.007. 

Cherry, C. R. (2007). Electric two-wheelers in China: analysis of environmental, 

safety, and mobility impacts. University of California, Berkeley. 

D’Almeida, L., Rye, T., & Pomponi, F. (2021). Emissions assessment of bike sharing 

schemes: The case of Just Eat Cycles in Edinburgh, UK. Sustainable Cities and 

Society, 71, 103012. https://doi.org/10.1016/j.scs.2021.103012 

De Haas, M., Kroesen, M., Chorus, C., Hoogendoorn-Lanser, S., & Hoogendoorn, S. 

(2022). E-bike user groups and substitution effects: evidence from longitudinal 

travel data in the Netherlands. Transportation, 49(3), 815-840. 

De Sá, T. H., Parra, D. C., & Monteiro, C. A. (2015). Impact of travel mode shift and 

trip distance on active and non-active transportation in the São Paulo 

Metropolitan Area in Brazil. Preventive Medicine Reports, 2, 183–188.  

DeMaio, P. (2009). Bike-sharing: History, Impacts, Models of Provision, and Future. 

Journal of Public Transportation, 12(4). https://doi.org/10.5038/2375-

0901.12.4.3 

Demetsky, M.J., Bin-Mau Lin, B., 1982. Bus stop location and design. Transp. Eng. J. 

ASCE 108 (4), 313–327. 

https://doi.org/10.1016/j.tranpol.2015.09.007


39 
 

Dill, J., & Rose, G. (2012). Electric bikes and transportation policy: Insights from 

early adopters. Transportation research record, 2314(1), 1-6. 

Eren, E., & Uz, V. E. (2020). A review on bike-sharing: The factors affecting bike-

sharing demand. Sustainable Cities and Society, 54, 101882. 

https://doi.org/10.1016/j.scs.2019.101882 

Ermagun, A., & Samimi, A. (2018). Mode choice and travel distance joint models in 

school trips. Transportation, 45(6), 1755–1781. https://doi.org/10.1007/s11116-

017-9794-y 

Ewing, R., & Cervero, R. (2010). Travel and the Built Environment. Journal of the 

American Planning Association, 76(3), 265–294. 

https://doi.org/10.1080/01944361003766766 

El Elliott Ramos Ramos, 2021.Nbcnews.https://www.nbcnews.com/news/us-

news/covid-fueled-rise-e-bike-see-where-ridership-grew-u-n1272127 

Fishman, E., Washington, S., Haworth, N., 2014. Bike share’s impact on car use: 

evidence from the United States, Great Britain, and Australia. Transp. Res. Part 

D: Transport Environ. 31, 13–20. https://doi.org/10.1016/j.trd.2014.05.013. 

Fitch, D. T., Mohiuddin, H., & Handy, S. L. (2021). Examining the Effects of the 

Sacramento Dockless E-Bike Share on Bicycling and Driving. Sustainability 

2021, 13, 368. 

Frank, L., Bradley, M., Kavage, S., Chapman, J., & Lawton, T. K. (2008). Urban form, 

travel time, and cost relationships with tour complexity and mode choice. 

https://doi.org/10.1007/s11116-017-9794-y
https://doi.org/10.1007/s11116-017-9794-y


40 
 

Transportation, 35(1), 37–54. https://doi.org/10.1007/s11116-007-9136-6 

Fukushige, T., Fitch, D. T., & Handy, S. (2021). Factors influencing dock-less E-bike-

share mode substitution: Evidence from Sacramento, California. Transportation 

Research Part D: Transport and Environment, 99, 102990. 

https://doi.org/10.1016/j.trd.2021.102990 

Fyhri, A., Heinen, E., Fearnley, N., & Sundfør, H. B. (2017). A push to cycling—

Exploring the e-bike’s role in overcoming barriers to bicycle use with a survey 

and an intervention study. International Journal of Sustainable Transportation, 

11(9), 681–695. https://doi.org/10.1080/15568318.2017.1302526 

Galatoulas, N.-F., Genikomsakis, K. N., & Ioakimidis, C. S. (2020). Spatio-Temporal 

Trends of E-Bike Sharing System Deployment: A Review in Europe, North 

America and Asia. Sustainability, 12(11), 1–17. 

Gehl, J., & Koch, J. (2011). Life between buildings: Using public space. Island Press. 

Harvey, J., Guo, A., 2018. Cycling and Other Active Modes in the UK: How and Why 

Are They Changing? https://eprints.ncl.ac.uk. 

Haustein, S., & Moller, M.  (2016). Age and attitude: changes in cycling patterns of 

different E-bike user segments. International Journal of Sustainable 

Transportation, 10(9), 00-00. 

Hawas, Y.E., Hassan, M.N., Abulibdeh, A.(2016). A multi-criteria approach of 

assessing public transport accessibility at a strategic level. J. Transp. Geogr. 57, 

19–34. 

https://doi.org/10.1016/j.trd.2021.102990
https://doi.org/10.1080/15568318.2017.1302526
https://eprints.ncl.ac.uk/


41 
 

He, Y., Song, Z., Liu, Z., & Sze, N. N. (2019). Factors influencing electric bike share 

ridership: Analysis of Park City, Utah. Transportation research record, 2673(5), 

12-22. 

Hellobike.(2020).https://www.helloinc.com/detail.html?guid=e2d858578a1343528d0

546619581026f&type=news 

Hiselius, L. W., & Svensson, S. . (2017). E-bike use in sweden – CO2 effects due to 

modal change and municipal promotion strategies. Journal of Cleaner 

Production, 141, 818-824. 

Hollingsworth, J.; Copeland, B.; Johnson, J. Are e-scooters polluters? The 

environmental impacts of shared dockless electric scooters. Environ. Res. Lett. 

2019, 14. 

IEA, 2020. Transport: Improving the Sustainability of Passenger and Freight 

Transport. International Energy Agency (IEA). 

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working 

Groups I, II and III to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer 

(eds.)]. IPCC, Geneva, Switzerland, 151 pp. 

Ioakimidis, C. S., Koutra, S., Rycerski, P., & Genikomsakis, K. N. (2016). User 

characteristics of an electric bike sharing system at UMONS as part of a smart 

district concept. 2016 IEEE International Energy Conference (ENERGYCON), 

1–6. https://doi.org/10.1109/ENERGYCON.2016.7513879 



42 
 

Johnson, M., Rose, G.: Electric bikes–cycling in the New World City: an investigation 

of Australian electric bicycle owners and the decision making process for 

purchase. Paper presented at the Proceedings of the 2013 Australasian Transport 

Research Forum (2013) 

Jones, T., Harms, L., & Heinen, E. (2016). Motives, perceptions and experiences of 

electric bicycle owners and implications for health, wellbeing and mobility. 

Journal of Transport Geography, 53, 41–49. 

https://doi.org/10.1016/j.jtrangeo.2016.04.006 

Kong, H., Zhang, X., & Zhao, J. (2020). How does ridesourcing substitute for public 

transit? A geospatial perspective in Chengdu, China. Journal of Transport 

Geography, 86, 102769. https://doi.org/10.1016/j.jtrangeo.2020.102769 

Kou, Z., Wang, X., Chiu, S. F. (Anthony), & Cai, H. (2020). Quantifying greenhouse 

gas emissions reduction from bike share systems: A model considering real-

world trips and transportation mode choice patterns. Resources, Conservation 

and Recycling, 153, 104534. https://doi.org/10.1016/j.resconrec.2019.104534 

Kim, H., Seok, H., Iris You, S., & Lee, C. (2020). An Empirical Analysis for Mode 

Choice in a Short-Distance Trip with Personal Rapid Transit. Journal of 

Advanced Transportation, 2020, e7436710. 

https://doi.org/10.1155/2020/7436710 

Kr-asia, (2020) Forget bike-sharing, e-bikes to become the next trend in China’s 

sharing economy. https://kr-asia.com/forget-bike-sharing-e-bikes-to-become-the-

https://doi.org/10.1016/j.jtrangeo.2020.102769


43 
 

next-trend-in-chinas-sharing-economy 

Lee, M., Chow, J. Y., Yoon, G., & He, B. Y. (2021). Forecasting e-scooter substitution 

of direct and access trips by mode and distance. Transportation Research Part D: 

Transport and Environment, 96, 102892. 

Liao, Y. (2021). Ride-sourcing compared to its public-transit alternative using big trip 

data. Journal of Transport Geography, 95, 103135.  

Li Q, Zhou S, Wen P. The relationship between centrality and land use patterns: 

Empirical evidence from five Chinese metropolises[J]. Computers, Environment 

and Urban Systems, 2019, 78: 101356. 

Lin, X., Wells, P., & Sovacool, B. K. (2017). Benign mobility? Electric bicycles, 

sustainable transport consumption behaviour and socio-technical transitions in 

Nanjing, China. Transportation research part A: policy and practice, 103, 223-

234. 

MacArthur, J., Cherry, C., Harpool, M., Scheppke, D.: A North American Survey of 

Electric Bicycle Own-ers. NITC-RR-1041. Transportation Research and 

Education Center (TREC), Portland, OR (2018). 

MacArthur, J., Dill, J., Person, M.: Electric bikes in North America: results of an 

online survey. Transp. Res.Rec. j. Transp. Res. Board 2468, 123–130 (2014) 

Machado, C. A. S., de Salles Hue, N. P. M., Berssaneti, F. T., & Quintanilha, J. A. 

(2018). An overview of shared mobility. Sustainability, 10(12), 4342. 

Mattson, J., & Godavarthy, R. (2017). Bike share in Fargo, North Dakota: Keys to 



44 
 

success and factors affecting ridership. Sustainable Cities and Society, 34, 174–

182. https://doi.org/10.1016/j.scs.2017.07.001 

Mellander, C., Lobo, J., Stolarick, K., & Matheson, Z. (2015). Night-time light data: A 

good proxy measure for economic activity?. PloS one, 10(10), e0139779. 

McQueen, M., MacArthur, J., & Cherry, C. (2019). The E-Bike Potential: Estimating 

the Effect of E-Bikes on Person Miles Travelled and Greenhouse Gas Emissions. 

TREC Final Reports. https://doi.org/10.15760/trec.242 

McQueen, M., MacArthur, J., & Cherry, C. (2020). The E-Bike Potential: Estimating 

regional e-bike impacts on greenhouse gas emissions. Transportation Research 

Part D: Transport and Environment, 87, 102482. 

https://doi.org/10.1016/j.trd.2020.102482 

McQueen, M., Abou-Zeid, G., MacArthur, J., & Clifton, K. (2021). Transportation 

Transformation: Is Micromobility Making a Macro Impact on Sustainability? 

Journal of Planning Literature, 36(1), 46-61. 

Moilanen, M. (2010). Matching and settlement patterns: The case of Norway. Papers in 

Regional Science, 89(3), 607–623. https://doi.org/10.1111/j.1435-

5957.2009.00264.x 

Montgomery, B.N.(2010). Cycling trends and fate in the face of bus rapid transit: case 

study of Jinan, Shandong Province, China. Transp. Res. Rec. 2193(1), 28–36 

Moser, C., Blumer, Y., & Hille, S. L. (2018). E-bike trials’ potential to promote 

sustained changes in car owners mobility habits. Environmental Research 



45 
 

Letters, 13(4), 044025. https://doi.org/10.1088/1748-9326/aaad73 

Nankervis, M. (1999). The effect of weather and climate on bicycle commuting. 

Transportation Research Part A: Policy and Practice, 33(6), 417–431. 

https://doi.org/10.1016/S0965-8564(98)00022-6 

NBCNews.com, E. R. E. R. is a data journalist for. (n.d.). Graphic: The cities seeing 

the biggest increase in e-bike usage. NBC News. Retrieved 26 September 2021, 

from https://www.nbcnews.com/news/us-news/covid-fueled-rise-e-bike-see-

where-ridership-grew-u-n1272127 

Peng, Z.-R. (1997). The Jobs-Housing Balance and Urban Commuting. Urban Studies, 

34(8), 1215–1235. https://doi.org/10.1080/0042098975600 

Ploeger, J., & Oldenziel, R. (2020). The sociotechnical roots of smart mobility: Bike 

sharing since 1965. The Journal of Transport History, 41(2), 134–159. 

https://doi.org/10.1177/0022526620908264 

Popovich, N., Gordon, E., Shao, Z., Xing, Y., Wang, Y., & Handy, S. (2014). 

Experiences of electric bicycle users in the Sacramento, California area. Travel 

Behaviour and Society, 1(2), 37-44. 

P Rérat. (2021). The rise of the E-bike: towards an extension of the practice of 

cycling? Mobilities, 1-17. 

Shaheen, S., Chan, N., Bansal, A., & Cohen, A. (2015). Shared mobility: A 

sustainability & technologies workshop: definitions, industry developments, and 

early understanding. 

https://www.nbcnews.com/news/us-news/covid-fueled-rise-e-bike-see-where-ridership-grew-u-n1272127
https://www.nbcnews.com/news/us-news/covid-fueled-rise-e-bike-see-where-ridership-grew-u-n1272127


46 
 

Shannon, Claude E., 1948. A mathematical theory of communication. Bell Syst. Tech. 

J. 27 (3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. (July–

October). 

Sloman Lynn, Hopkinson Lisa (2020).The carbon impact of the national roads 

programme. https://tps.org.uk/news/the-carbon-impact-of-the-national-roads-

programme 

Spencer, P., Watts, R., Vivanco, L., & Flynn, B. (2013). The effect of environmental 

factors on bicycle commuters in Vermont: Influences of a northern climate. 

Journal of Transport Geography, 31, 11–17. 

https://doi.org/10.1016/j.jtrangeo.2013.05.003 

Sun, Q., Feng, T., Kemperman, A., & Spahn, A. (2020). Modal shift implications of e-

bike use in the Netherlands: Moving towards sustainability? Transportation 

Research Part D: Transport and Environment, 78, 102202. 

https://doi.org/10.1016/j.trd.2019.102202 

United Nations, Department of Economic and Social Affairs, Population Division 

(2019). World Urbanization Prospects: The 2018 Revision 

(ST/ESA/SER.A/420). New York: United Nations. 

Wang, Y., & Sun, S. (2022). Does large scale free-floating bike sharing really improve 

the sustainability of urban transportation? Empirical evidence from Beijing. 

Sustainable Cities and Society, 76, 103533. 

https://doi.org/10.1016/j.scs.2021.103533 

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://tps.org.uk/news/the-carbon-impact-of-the-national-roads-programme
https://tps.org.uk/news/the-carbon-impact-of-the-national-roads-programme


47 
 

Wamburu, J. , Lee, S. , Hajiesmaili, M. H. , Irwin, D. , & Shenoy, P. . (2021). Ride 

substitution using electric bike sharing: feasibility, cost, and carbon analysis. 

Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous 

Technologies, 5(1), 1-28. 

Weiss, M., Dekker, P., Moro, A., Scholz, H., & Patel, M. K. (2015). On the 

electrification of road transportation – A review of the environmental, economic, 

and social performance of electric two-wheelers. Transportation Research Part 

D: Transport and Environment, 41, 348–366. 

https://doi.org/10.1016/j.trd.2015.09.007 

Wegener, M. , &  F  Fuerst. (2004). Land-use transport interaction: state of the art. 

Urban/regional. 

Winslott Hiselius, L., & Svensson, Å. (2017). E-bike use in Sweden – CO2 effects due 

to modal change and municipal promotion strategies. Journal of Cleaner 

Production, 141, 818–824. https://doi.org/10.1016/j.jclepro.2016.09.141 

Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2010). Built Environment 

Influences on Healthy Transportation Choices: Bicycling versus Driving. 

Journal of Urban Health, 87(6), 969–993. https://doi.org/10.1007/s11524-010-

9509-6 

Yang, W., & Zhou, S. (2020). Using decision tree analysis to identify the determinants 

of residents’ CO2 emissions from different types of trips: A case study of 

Guangzhou, China. Journal of Cleaner Production, 277, 124071.  



48 
 

Zhang, Y. , &  Mi, Z. . (2018). Environmental benefits of bike sharing: a big data-

based analysis. Applied Energy, 220(JUN.15), 296-301.  


	RERC WP_Template_cover original Bao
	Li, Fuerst, Luca
	Do Shared E-Bikes Reduce Urban Carbon Emissions?
	1. Introduction
	2. Literature review
	2.1 Estimating the carbon reduction potential
	2.2  Conditions for shared  e-bikes to be successful

	3. Research Strategy
	3.1 Travel mode substitution model
	3.2 Carbon emissions analysis
	3.3 Modelling the impact  of carbon emission changes

	4. Data and study area
	5. Results
	5.1 Mode substitution
	5.2 Spatial patterns of emission changes
	5.3 Which built environments are conducive to carbon emission reductions?

	5.4 Sensitivity analysis
	6. Conclusions and policy implications
	Reference


