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Abstract

This paper provides empirical evidence for one of the core justifications for architectural zoning: Shape
homogeneity influences the value of a residential building. Drawing on large-scale shape and transaction
data,  this  study  first  develops  a  data-driven  measure  of  architectural  similarity,  condensing  three-
dimensional shapes to univariate shape distributions. The algorithm-based similarity estimates are good
predictors of human perceptions of shape similarity and are linked to property attributes and transaction
prices.  For the city  of  Rotterdam, a price premium of  approximately 4 percent  for row houses in  very
homogeneous ensembles is estimated. 

One of  the  eminent  objectives  of  urban planning  is  the  protection  of  present  and  future

property values, which motivates the close regulation of not only the location and scope of

new development, but also controlling the external appearance of new buildings. Exemplary

for  many other  municipalities,  the  zoning ordinance for  Eastchester, NY, aims to  prevent

“monotonous and unsightly  uniformity  of building development  or  unsightly  structures of

incongruous or inappropriate form that might tend to depress surrounding property values”

(Town of Eastchester NY, 2000).1 Very explicitly, lawmakers and courts have been curtailing

the owner's property rights, justifying this stark intervention with assumed welfare gains at the

neighborhood and city level  (Anderson, 1960; Regan, 1990; Rubin, 1975). The far reaching

power  granted  to  planning  authorities  warrants  the  question:  Does  the  enforcement  of

architectural standards positively influence property values?

A wealth of studies established solid evidence for tight land use regulations being associated

with  rising  in  property  values  and,  simultaneously,  declining  levels  of  new  construction

(Glaeser and Ward, 2009; Ihlanfeldt, 2007; Koster et al., 2012; Mayer and Somerville, 2000;

Quigley and Raphael, 2005). However, the extent to which the increase in prices is caused by

land use regulation imposing supply constraints or by the planning process creating value

directly is less understood. 

Empirical research on the price effect of land use policies is  plagued by regulation being

“astonishingly vague” (Glaeser and Ward, 2009). Architectural control is no exception to this

and, in addition, the enforcement of vague rules is commonly delegated to architecture review

boards making case by case decisions. For instance, the Dutch city of Rotterdam requires new

1 Similar regulations can be found throughout the US and also in the UK or continental Europe. Japan's 
zoning, in contrast, allows large variations in architectural design at lot level.



construction to  adhere  to  “high design standards”,  to  use “high quality  materials”  and to

follow the “shape and appearance of surrounding buildings” (City of Rotterdam, 2016). This

ambiguity leaves substantial leeway for interpretations by the review panels. As geographic

and temporal variation in architectural regulations and the stringency of their application is

challenging  to  quantify,  the  identification  of  economic  effects  of  policies  regarding

architectural  designs  and  levels  of  homogeneity  between  neighboring  building  remains

difficult at the policy level. 

At the building-level, however, the frequently assumed effects of architectural design on the

value  of  surrounding  properties  have  been  explored  to  some  extent:  Historic  landmark

buildings  have  been  found  to  create  positive  externalities  (Ahlfeldt  and  Maennig,  2010;

Leichenko  et  al.,  2001;  Listokin  et  al.,  1998).  Similarly,  dwellings  designed  by  famous

architects  leads  to  other  buildings  in  the vicinity  being more highly-valued.  For instance,

homes within 50 m of a residential building by Frank Lloyd Wright in Oak Park, Illinois,

enjoy a price premium of 8.5 percent  (Ahlfeldt and Mastro, 2012). Inversely, buildings can

also impair the value of surrounding buildings very directly, for instance by protecting or

blocking  a  sought-after  view.2 For  commercial  properties,  buildings  by  star  architects

command  higher  rents  and  values  (Fuerst  et  al.,  2011;  Vandell  and  Lane,  1989).  At  the

neighborhood  level,  perceived  beauty  of  the  built  environment  is  one  of  the  main

determinants of the resident's satisfaction, alongside economic factors, school quality, and the

perceived opportunity of  social  interactions  (Florida et  al.,  2009).  This  body of  literature

suggests  that  a  building's  architectural  quality  indeed  creates  value  beyond  its  own

boundaries. 

Less  evidence emerged on the influence  of  architectural  similarities within ensembles  of

buildings on sales values: For 19th century Boston,  Moorhouse and Smith  (1994) find that

properties which look a little different from their  neighbors sell for more. In a sample of

rowhouses from Boston's South End, properties with facade styles different from other fronts

close by carry a price premium. The observed premia for “sticking out” become smaller with

each additional building in the proximity sharing the same architectural style. This study relies

on relatively few observations from one neighborhood only (and from more than 150 years

ago) rendering the representativeness of the findings not self-evident. 

So far, all  studies  on the economic  value of  architecture  relied  on on-site  inspections  by

experts and the classifications of styles and shapes into a limited number of categories (as for

instance in Asabere et al., 1989, or Moorhouse and Smith, 1994). Less palpable dimensions

like the silhouette, massing, roof forms, proportions and angles or similarities to surrounding

properties remain unrecorded and ignored.  Within the constraints  imposed by topography,

climate,  construction  costs,  urban  planning,  lot  sizes  and  lot  shapes,  these  form-related

building  attributes  vary  extensively.  Individualistic  developer  preferences,  architectural

creativity and amendments during the life-time of a building are a source of constant diversity.

2  An unobstructed sea view will increase property prices by 15% in Singapore (Yu et al., 2007) while positive
values for viewsheds on nature and historical buildings have also been documented for Kyoto (Yasumoto et
al., 2011).



At  the  same  time,  economies  of  scale  during  construction,  architectural  preferences  for

harmony, overall fashion trends and zoning induce similarities between buildings.

This study is the first to estimate the effect of architectural homogeneity on observed sales

prices using a large, city-wide dataset on the three-dimensional shapes. Using an automatic,

algorithm-driven evaluation of similarity between buildings, it unlocks property-level data for

all buildings in a city and also on the degree of architectural homogeneity between them. The

full-city  approach  drastically  increases  the  number  of  observations  available  for  analysis

compared to subsamples based on sales, mortgage originations or valuations for tax purposes.

Furthermore, the direct context of neighboring buildings can be analyzed which is not always

possible when relying on samples instead of the universe of structures. 

The remainder of the paper first refines a method to convert three-dimensional building shape

data into a numerical representation that can be fed into empirical pricing equations. Then it

verifies  whether  these  quantitative  representations  of  shape  can  help  to  explain  recent

transaction prices using property data from the Dutch city of Rotterdam. Lastly, the price

effect of architectural similarity is identified and estimated, providing empirical evidence for

the main justification of architectural control.

Methodology 

The shape and the  hedonic  configuration  of  a  building  are  inextricably  tangled  as  “form

follows function” (Sullivan, 1896). The function or use of a building determines its shape and,

simultaneously, its value. The outer shell of a structure reveals a wealth of information about

the place (as in Jensen and Cowen, 1999). A three-dimensional model not only captures the

type and spaciousness of a dwelling, but also its location within the city and neighborhood.

Trained observers might be able to estimate the year of construction from the architecture, the

height of rooms from the location of windows and other element in the facade. Additional

amenities like green spaces, garages or balconies are directly observable. Also, certain shapes

might be perceived as more aesthetically pleasing than others and therefore carry a direct

architectural premium.

Shape data availability is not a limiting factor anymore. Advances in the interpretation of

remotely  sensed data  has  lead  to  a  surge  of  large  and spatially  consistent  data  sets  with

detailed three-dimensional information at building level. New York, Paris, Singapore, Tokyo

and  many  other  cities  can  be  explored  digitally,  while  the  municipalities  of  Berlin  or

Rotterdam openly share semantic city models3. So far, these models have been put to use in a

wide range of research areas, including urban planning (Ranzinger and Gleixner, 1997; Wu et

al., 2010), disaster management  (Kwan and Lee, 2005), law enforcement  (Wolff and Asche,

2009),  navigation  (Rakkolainen  and  Vainio,  2001),  facility  management  and  building

information  models  (Nagel  et  al.,  2009),  or  emission  and  other  environmental  modeling

(Nichol and Wong, 2005).

The heterogeneity and multi-dimensionality of building shapes renders their classification a

3 3D city data for Berlin is available for download at http://www.businesslocationcenter.de/en/downloadportal
and for Rotterdam at http://www.rotterdam.nl/rotterdam_3d.

http://www.businesslocationcenter.de/en/downloadportal
http://www.rotterdam.nl/rotterdam_3d


non-trivial challenge. Broad categories can describe roof forms, the 2D shape of the ground

plates  or  overall  dimensions.  Still,  classifications  relying  on  a  manageable  number  of

categories cannot provide a finely grained view and the variation in shape within each of the

classes remains high. In addition, even objective shape measures and large sample sizes do

not fully differentiate the aesthetic side of architecture from its functional aspects. However,

as  both  form  and  price  depend  on  the  stream  of  services  provided  by  a  building,  we

hypothesize  that  prices  of  buildings  with  similar  shapes tend  to  have  similar  prices.

Estimating pairwise shape similarities between buildings circumvents the problem of finding

a meaningful classification system for property forms.

Measuring shape similarity 

Methods on measuring shape similarity both in 2D and 3D have been researched extensively

in computer graphics, computer vision, biology and other disciplines. For a general review

please refer to Cardone, Gupta, & Karnik (2003) or Tangelder & Veltkamp (2008). This paper

builds on the  shape distribution approach put forward by  Osada, Funkhouser, Chazelle, &

Dobkin (2001). A large number of random points are drawn from the surface of each shape

and pairwise distances between these points are calculated. The estimated probability density

functions (EDF) of these distances represent building-specific  shape signatures that can be

stored and compared efficiently for large numbers of buildings. The mean of the distances is a

proxy for the volume of buildings.  The distributions can be normalized by dividing by the

average distance for each shape.

======= Insert Figure 1 about here =========

Figure  1 illustrates  that  differences  in  the  shapes  lead  to  distinct  differences  in  the

corresponding density functions. Three stylized building shapes are constructed by combining

two base shapes, cubes and triangular prisms. The shape distribution of a single cube exhibits

a single distinct peak while the distribution for a cuboid, formed by joining two cubes, has a

long  tail  to  the  right.  Adding  a  triangular  roof  to  the  cube  changes  the  resulting  shape

distribution yet again: The “house with saddle roof” representation differs strongly from the

other two examples. 

While it is easy to reduce 3D objects to univariate shape distributions, it is not possible to do

the reverse. The skewness of the distribution might give a rough indication of the overall

compactness  of  a  structure  but  backing out  shape  details  from shape  distributions  is  not

feasible.  However, similar  shapes will  lead to similar distributions.  Intuitively, if  the area

between two plots of shape distributions is small, then the original shapes can be considered

similar. A pairwise measure of similarity Si,j for shapes i and j is calculated from the respective

EDFs (similar to Osada et al., 2001):

S i , j=1− ∫
d=0

d=D

|edf i(d )−edf j(d )|
(1)

Obviously, Si,j = Sj,i . 

Shape distributions possess several advantageous characteristics: they can be calculated for



solid and non-solid 3D shapes like surfaces and 2D shapes alike and are tolerant to errors in

the underlying geometries  (Ohbuchi et al., 2005). This robustness is crucial when working

with shape data for large numbers of buildings that have been automatically derived from

areal scans and oftentimes comprised of non-solid shapes for individual buildings  (Alam et

al.,  2013),  caused  by  small  “gaps”  between  walls  or  “missing  walls”  between  adjacent

buildings in the resulting models. In a sense, the building models that will be later used in this

study are drafty. If one printed the these models on a 3D printer only few houses would be

reasonably airtight. The share of non-solid building-level models derived from 3D city models

has been documented to be as high as 95% (Boeters, 2013), which rules out any approach

requiring input shapes to be solid. 

The accuracy and relevance of the suggested estimate of shape similarity  S is first  tested

directly: Are buildings, that are known to have identical forms, recognized as being similar?

In real cities, the most basic architectural form is probably a cube, which is also the easiest to

identify based on their geometric characteristics. Cube-buildings feature exactly four walls, a

roof  and  a  ground  plate  which  are  all  squares  of  the  same  area.  For  a  subset  of  cubic

buildings,  the  estimate  of  pairwise  similarity  S is  expected  to  be  close  to  1,  with  1

representing perfect identity. Across dissimilar shapes,  S is hypothesized to be significantly

smaller.

The mapping of shapes to shape distributions is not a bijective function. Shape distributions

are invariant to rotation, mirroring and, if normalized, also to scaling  (Osada et al., 2001).

While a shape is converted into exactly one shape distribution, one distribution can be the

shape signature of multiple 3D shapes.  For example, a cube balancing on one of its corners

will have exactly the same distribution as one resting flat on one face. Combining the three-

dimensional  similarity  measure  with  an  estimate  of  similarities  of  the  2D ground  plates,

estimated in the same way as S but in two dimensions only, reduces the odds of false positives

when searching for similar shapes. In addition, other dimensions like the overall volume of

the properties can also be (re-)introduced to account for large deviations in scale. 

On a different note, human perceptions of similarity are likely to be a nonlinear function of S.

For example, a decrease in S from a high 0.95 to 0.85 might change the perceived similarity

of two buildings dramatically while moving from 0.35 to 0.25 might not. Translating S into a

binary variable that classifies pairs of buildings as either similar or dissimilar accounts for

non-linearities effectively.4 

A similarity  matrix  WS contains  the  pairwise  similarity  estimate  for  all n×n pairwise

combinations of buildings in a sample of size  n .  Each element wsi,j is defined to be 1 if

buildings i and j are sufficiently similar in shapes (high S in 3D), ground plates (high S in 2D)

and volumes, or 0 otherwise:

4 An either/or classification also resonates well with the vocabulary available when describing similarity of
shapes:  We only  have  words  for  the  extremes  and  cannot  describe  “somewhat  similar”  or  other  more
nuanced degrees of similarity with single words. 



wsi , j={1, if S_3D i, j>a∧S_2Di , j>b∧
Volumei

Volume j

∈[v low , vhigh]

0
(2)

The similarity  estimate is  symmetrical,  as  wsi,j  =  wsj,i.  Again,  the  volume of a building is

approximated by the average distance between random points on the surface of each building. 

To  achieve  a  similar/dissimilar  classification  that  resembles  the  perceptions  of  shape

similarity by humans as closely as possible, values for the parameters a, b, vlow and vhigh are

selected  based  on  a  web-based  survey  on  shape  similarity.  In  that  survey,  students  are

repeatedly presented pairs of 3D model visualizations of buildings and asked to classify them

as  either  “rather  similar”  or  “rather  dissimilar”5.  Drawing  from  this  unique  dataset  of

similarity perceptions, threshold values are selected that lead to a good fit between human

classifications and the algorithm based classifications in WS. With pre-compiled 2D- and 3D-

shape  signatures,  a  pairwise  similarity  matrix  WS can  be  estimated  fast  and  without

consuming excessive computing resources even for large samples. 

Do buildings with similar shapes tend to have similar hedonic characteristics and values? The

economic relevance of shape analysis is investigated by linking the shape information to data

from  residential  property  transactions  featuring  information  on  sales  prices  and  building

attributes. In an ad-hoc test, all properties are assigned to 10 broad shape categories applying

the  k-means clustering  algorithm to  the  shape  similarity  matrix  WS.  The  distributions  of

prices and differences in hedonic attributes for properties across these clusters are compared.

Alternatively,  the  intrinsically  arbitrary  classificantion  into  n categories  is  avoided  by

estimating a hedonic spatial error model (SEM) which investigates the relationship between

transaction prices for single family homes and set of explanatory variables including property

characteristics, the year of transaction, the location of each building and the transaction prices

of similar properties in a generalized method of moments (GMM) regression:

ln(P i)=α+B X i+GYeari+μi (3)

μ=λ1Wμ+λ2WSμ+ϵ (4)

The natural  logarithms of  transaction  prices  P for  building  i is  explained by a  vector  of

hedonic attributes Xi and a vector of dummies variables Yeari  for the year of transaction. The

vectors  B and  G contain regression coefficients. The error terms  μ are correlated with one

another for nearby observations and for similar shapes.  The elements in the n×n spatial

weight matrix  W are defined to be 1 for all corresponding properties which are closer than

100 m and 0 otherwise. The coefficient λ1 is expected to be positive, since properties that are

geographically close share the same unobserved location amenities. In a similar spirit,  the

error terms of similar buildings (indicated by WS) are expected to be correlated as well, since

they share unobserved attributes.  If  the coefficient  of  shape correlation λ2 is  found to be

5 Details on the survey design and all response data are available from the author upon request. 



significant  and  positive,  then  prices  paid  for  properties  that  share  the  same  shape  are

correlated beyond the factors explained by hedonics, time, or location. 

LeSage (2014) advises to “avoid the pitfall of multiple weight matrices” in spatial models,

since, among other concerns, covariances between multiple weight matrices are restricted to

be zero (LeSage and Pace, 2011). When estimating Eq. (3), alternative specifications of WS

are therefore tested that explicitly have a correlation of zero with the spatial weight matrix W,

circumventing any covariance restrictions.

Estimating the value of architectural homogeneity

At  the  neighborhood-level,  architectural  homogeneity  in  residential  real  estate  has  been

traditionally  associated  with  large-scale  developments  of  affordable  and  mass  produced

homes. Examples are “monotonous” post-WWII home building schemes (Gartman, 2009) for

returning  veterans  in  the  US  or  aesthetically  bland  suburbs  where  few  large  developers

continue  to  produce  “more  of  the  same”  (Peiser,  2014).  Affluent  neighborhoods,  on  the

contrary tend to exhibit more variety in architecture.

We  control  for  neighborhood  and  unobserved  building  quality  effects  by  looking  at

homogeneity  within  small  ensembles  of  rowhouses  within  close  geographic  bounds.

Ensembles comprise three or more adjacent rowhouses that are identified to have (almost)

identical shapes and that are therefore very likely to stem from the same development and to

share  very  similar  hedonic  characteristics.  Due to  their  close  proximity, location  specific

amenities are also comparable within each ensemble, which ensures that all buildings from

that ensemble are almost perfect substitutes. Remaining differences in upkeep and interior

amenities of buildings within the ensemble are assumed to be distributed randomly. 

A systematic difference between otherwise homogeneous ensemble buildings is introduced

whenever the ensemble directly borders a house of distinctly different architectural shape. To

illustrate,  picture  a  row  of  four  houses  (A,  B,  C,  D)  containing  an  ensemble  of  three

substitutable structures (A, B, C) next to an architecturally diverse house D. In this example,

C differs from B only in terms of its location within the ensemble as differences in location

and hedonic attributes are negligible. C is subject to the architecture externalities of D, while

B is surrounded by homogeneous properties. Comparing transaction prices of buildings within

the ensemble (B) to prices of buildings from the periphery of the same ensemble (C), singles

out the value of homogeneity: If prices  within are higher than prices  at the periphery,  then

homogeneity in architecture is preferred over shape variety. 

Any price premium (or discount) for homogeneity is hypothesized to depend on the degree of

architectural impairment by building D. If the shape difference between C and D is large, then

any price effect is expected to be highest, while small difference matter less. Additionally, for

small and affordable rowhouses ensemble effects are likely to account for a larger share of

total value than for larger dwellings.

This identification approach translates into a regression estimation in which the ratio of the

sales  price  from a  periphery-of-ensemble  property  C  over  a  within-ensemble  building  B



transaction price (PriceRatioCB = PriceC/PriceB) is regressed against an intercept α and a linear

combination of the the shape similarity between C and D (SimilarityCD) and the interior floor

space of C (SizeC): 

PriceRatioCB , i=α+β1 SimilarityCD , i+β2 SizeC ,i+β3 SimilarityCD ,i∗SizeC ,i

+∑
Yb

∑
Yc

δb , c Y b , c ,i+β4 IntSpaceRatioCB ,i+ϵi

(5)

 A set of dummy variables Yb,c accounts for different years of sale for B and C. Yb,c are defined

to be 1 for all pairs i where B was sold in year b and C in year c, -1 if B was sold in year c and

C in year b –  and 0 otherwise. The ratio of interior floorspace of C over B's interior floor

space (IntSpaceRatioCB) accounts for any remaining differences in the interior floorspace that

might  exist  due to different  floor  plans  within similar  external  shapes  or differently used

basements or attics. The β's and  δ's are regression coefficients to be estimated and the error

term ε is assumed to be independently and identically distributed. 

Data

This paper relies on three sources of data. First, the Dutch city of Rotterdam provides a three-

dimensional  model  of  all  buildings  in  the  city6,  which  has  been  calculated  from surface

scanning data captured from helicopters in April 2010. The accuracy of the spatial data is

high: At least 30 points per square meter have been scanned in the city center and 65 percent

of these points are within 10 cm of the true location (95 percent within 15 cm),  and the

confidence intervals around height estimates are even narrower  (City of Rotterdam, 2015).

The virtual representation of Rotterdam is distributed in the CityGML (Level of Detail 2)

format, which is an open data model for the storage and exchange of three-dimensional city

information. A building's shape is defined by a set of polygons, each representing a wall, part

of a roof or the ground plate. One can compare this to building a model of a house by cutting

two-dimensional  shapes  out  of  cardboard  and gluing  them together:  any structure can be

approximated but fine architectural nuances are lost.  Demarcations of buildings that share

walls  have  been  added  based  on  land  registry  records  (City  of  Rotterdam,  2015).  After

dropping small structures with a ground plate of less than 3 m2, 185,914 properties remain in

the database.

Second, data on residential transactions in Rotterdam is acquired through the Association of

Dutch Realtors (NVM). About 70% of all transactions in the Netherlands are facilitated by

members of the NVM7. The NVM database contains 29,948 observations for Rotterdam in the

years 2006-2013. For each sale, the sales price, the exact address and a basic set of quality

attributes  for  the  property  like  interior  floor  space,  dwelling  type,  year  of  construction,

number of bedrooms, number of bathrooms/WC and the building's volume are recorded. The

street address can be translated into geographic coordinates using the geocoding service of the

Dutch land register8. Based on these coordinates, sales can be matched with buildings in the

6 Available for download at http://www.rotterdam.nl/links_rotterdam_3d
7 https://www.nvm.nl/over_nvm/english.aspx
8 More information on the geocoding webservice is available at https://www.pdok.nl/nl/service/openls-bag-



3D model.

Third, the Dutch land registry maintains a national register of all buildings (Basisregistraties

Adressen en Gebouwen, BAG) which offers information on the number of units within each

building (among other attributes).

Combining the 3D data, the sales database and the building registry gives a sample of 6,717

transactions  of  individual  structures  that  contain  only  one  unit.  Multi-unit  buildings  are

excluded because  their  3D shape cannot  be assigned to  individual  sales  reliably. Further,

observations with extreme or wrongly coded values are dropped whenever the transaction

price is below 30,000 EUR or above 1 million EUR, the value for interior floor space is below

30 m2 or above 500 m2,  a lot size above 5,000 m2  or  an estimate of the building's volume

below 30 m3 or above 5,000 m3 has been recorded. The adjusted final sample is comprised of

6,126 transactions.

==== Insert Figure 2 about here ====

Figure 2 gives an overview of the spatial distribution of the sample within the borders of the

Rotterdam municipality. The gray areas indicate all buildings from Rotterdam's 3D city map,

including residential, industrial and commercial properties. The black areas represent the final

sample of single family homes for which transaction data is available in 2006-2013. Solid

lines mark the official neighborhood boundaries. The majority of residential transactions can

be found in the residential neighborhoods in Rotterdam proper in the east, while the west is

dominated by harbor, infrastructure, warehouses and industrial properties.

Results 

Shape Similarity Measures

For  all  buildings  in  Rotterdam,  the  3D shape distributions  and 2D shape distributions  of

ground plates are calculated.9 The computation of the shape distributions for a single building

takes only a fraction of a second on a contemporary PC. 

To verify that the suggested shape similarity measure S holds up in a real world application,

the distribution of  S for buildings that are known to be similar is compared to the overall

distribution of  S. Cube-shaped buildings can be easily identified as they have exactly four

walls, a roof and a ground plate which are all squares of the same area. For 1,229 (out of

185,914) buildings, these conditions are met reasonably well. For all pairwise combinations of

cube-buildings,  the average value of  S is  0.95,  which is  close to the ideal value of 1.  In

contrast the distribution of  S for all buildings has a mean of 0.76. It is re-assuring that the

difference in means between cube and non-cube buildings is large and statistically significant

(t-value: 3,828). Overall,  S passes the initial test of being able to tell similar from distinct

shapes.

 ==== Insert Table 1 about here ====

geocodeerservice .
9 Both the code to draw large numbers of random points from the exterior of a building model and the stored

shape distributions are available from the author upon request.



==== Insert Figure 3 about here ====

The  6,129  shape  distributions  displayed  in  Figure  3 exhibit  substantial  heterogeneity,

indicating a large diversity in the shapes of the single-family homes in Rotterdam. At the same

time, the darker areas in the figure show a clustering around typical distributions – despite all

uniqueness,  building  exteriors  appear  to  be  variations  of  a  limited  number  of  typical

architectural forms.

Similarity in shapes comes with similarity in hedonic attributes (Table 2). When dividing the

buildings into 10 dominant shape clusters (the dark thick traces in Figure 3) using the k-means

algorithm,  stark  contrasts  in  building  attributes  can  be  observed.  For  instance,  Cluster  8

features the most affordable transaction price (EUR 194,000), the smallest average interior

floor space (101 m2), a low volume (281 m3) and the most recent average year of construction

(1975). It is comprised almost exclusively of terraced houses (99.1%). Cluster 10, in contrast,

features the highest share of detached homes (11.7%), the highest average values for sales

price (EUR 365,000) and volume (450 m3), and high values for interior floor size (153 m2).

The test for equal means in a one-way layout shows that the differences in cluster means are

statistically significant, with F-values of 22 and higher (num. df = 9, denom. df = 2,163).

Also, housing types are not equally distributed across clusters (Χ2 =3333.4, df = 36).

==== Insert Table 2 about here ====

Finding  a  link  between  shapes  and  building  characteristics  corroborates  the  underlying

assumption of this paper: Shape information can be used as a proxy for observable – and more

interestingly – otherwise unobservable building attributes. However, shape-related estimates

remain difficult to interpret as they represent both an effect for a specific shape and jointly the

contribution of unobserved hedonic variables correlated with specific shapes.

Strict zoning in combination with economies of scale in large developments of multiple units

with  similar  designs  enforce  a  high  degree  of  homogeneity  in  buildings'  forms  and

appearances at block or street level. This combination of strong regulations and market forces

induces high levels of spatial correlation in any measure of building shape for Rotterdam. The

data support this expectation: The odds of observing buildings from identical shape clusters

within 100 m are 2.8 times higher than expected under the assumption of random spatial

distributions. The same-shape joint count test statistics with nonfree sampling (Cliff and Ord,

1981; Upton and Fingleton, 1985) are highly significant. With such strong spatial correlations

present in shape, strong spatial controls are indispensable in the subsequent analysis. 

==== Insert Table 3 about here ====

Reassuringly,  the  automatic  classification  of  buildings  into  similar  and  dissimilar  pairs

corresponds  well  with  the  perception  of  building  similarity  by  human.  Overall,  374

combinations  of  Rotterdam  building  models  have  been  presented  to  human  survey

participants,  who were then  asked whether  they  would  consider  these  buildings  as  being

“pretty much the same” or “different”10. The automatic classification suggested in this paper

10 An example of the survey is presented in Appendix 1.



can  predict  the  human  classifications  well:  116  out  of  125  combinations  that  have  been

classified as being “rather similar” by human respondents are also classified as similar in

WS.11 Only 9 (or 7%) are not. For pairs that are perceived as being different by humans, the

match is a little lower: 193 out of 249 combinations flagged as “rather dissimilar” by humans

are also considered dissimilar by the automatic classification (76%). A highly significant chi-

squared statistic of 163 (with 1 degree of freedom) confirms that the automatic identification

of similar buildings is highly correlated with human classifications. 

==== Insert Table 4 about here ====

Shape distributions and property values 

Table 5 presents coefficients for four independent GMM regressions. First a reduced version

of Equation 3 is estimated in Model I, which explains the natural logarithm of transaction

prices by dummies for the year of transaction and a traditional spatial weight matrix  W (in

which element wi,j is set to one if buildings i and j are less than 100 m apart, and 0 otherwise)

only. The fit of this rudimentary model is surprisingly good (adj. R2: 0.716) due to the fine-

grained  spatial  weights  capturing  the  variation  in  location  amenities  and  building

characteristics.  The  coefficient  of  spatial  correlation,  λW,  is  large  (0.8)  and  statistically

significant. 

 ==== Insert Table 5 about here ====

Adding  a  second  weight  matrix  WS based  on  shape  similarity  (Model  II)  boosts  the

explanatory power further. The adj. R2 reaches 0.74, reducing the unexplained variation by

8.5% ( (1-0.74)/(1-0.716)=0.915). The coefficient of similar-shape correlation, λWS, is relevant

in size (0.286) and also found to be significantly different from zero. In the sample, three

quarters of all variation in transaction prices can be attributed to the overall market, location

and  similarities  in  shapes  –  all  variables  that  can  be  remotely  observed  without  on-site

inspections and which represent low-hanging fruits for mass appraisal systems.

The coefficient estimates for the hedonic variables in III and IV do not surprise: Detached

homes are valued most as all other types carry significant negative discounts. Terraced houses,

for instance, are about 25% more affordable. Interior floor space and volume have positive

elasticities, which add up to a little below 1. The elasticity of lot size is a low 0.039. The

1960s through 1980s vintages carry a significant discount, while newer homes command a

premium over historic homes built before 1906.

Interestingly, the spatial correlation coefficient λW is the highest (0.805) in Model I, and drops

sizably (to 0.699) after controlling for shape similarities in Model II. This suggests that spatial

correlations in a traditional SER model does not exclusively capture micro-location related

amenities but also includes a sizable share of property attribute information. Similarly, adding

hedonic control variables directly (Model III) reduces the magnitude of the spatial correlation

11 The 98th percentiles for 3D-S and 2D-S are used as thresholds a and b, and vlow and vhigh are set to 0.83 and
1.2, respectively, when calculating WS.



estimate (0.637), while the “purest” spatial correlation estimate (0.609) can most likely be

observed in Model IV, which includes both direct hedonic variables and the indirect controls

for unobserved variables through the shape similarity weight matrix WS. 

Including hedonic control variables reduces the coefficient for shape similarity  λWS, by more

than  half,  again  indicating  that  form and  function  are  correlated.  Still,  even  with  strong

hedonic controls, finely-grained spatial weight matrices and strong model fits (R2  exceeding

0.8!), shape similarity correlation estimates remain statistically significant (p-value of 0.03).

Robustness tests find that buildings of similar shapes exhibit a common structure in regression

error terms even if observations are located far apart: setting all elements of WS for buildings

that are less than 5 km from each other to 0 does not change the λWS estimates substantially.

This  is  interesting for  buyers  and sellers of properties:  Using shape information,  one can

identify relevant comparables, even if they are at the other end of town. 

Finally, to rule out that the shape similarity matrix WS is not solely a disguised fixed effect for

buildings by the same developer (which happen to have similar designs), the weight matrix is

again manipulated. Assuming that buildings from different vintages have been realized by

different developers, all elements of WS for buildings built less than 15 years from each other

are set to 0. Again, the λWS estimate remains robust in magnitude. As long as shapes are similar,

differences in building age do not matter when looking for comparables. 

The Value of Homogeneity

For  320  ensembles  of  at  least  three  similar  rowhouses  adjacent  to  a  differently  shaped

builiding, sales prices for buildings within the ensemble and also at its periphery have been

recorded in the years 2000 through 2013. For pairs of sales from the same year, the ratio of

periphery-over-within ensemble sales  (PriceRatioCB) is on average 0.97.  A relatively close

standard deviation of 0.09 confirms that the quality and location characteristics of the homes

are controlled for effectively. The 25th and 75th percentiles of the IntSpaceRatioCB are 0.96 and

1.04, respectively.

========= Insert Table 6 about here ==========

Table  6 presents the regression estimates of Equation 5 based on an ordinary least squares

regression with robust standard errors (White's estimator). The dependent variable PriceRatio

(PriceC/PriceB)  is normalized around mean 0 and all independent variables are standardized

(mean 0, SD 1). Panel (I) displays the estimated coefficients from a reduced version of Eq. 5.

The negative constant indicates a 4% price discount of ensemble-buildings at the periphery

versus closely comparable buildings within an ensemble.

The full model (II) confirms this negative constant and an overall discount (-3.8%) for direct

proximity  to  a  differently  shaped  building.  In  addition,  larger  homes appear  to  be  less

sensitive to the influence of difference in architecture: An one standard deviation increase in

the interior floor space of the ensemble buildings offsets the negative effect already (+3.3%).

Also, small rowhouses are more sensitive to the  degree of shape similarity to neighboring

structures.  An  one  standard  deviation  increase  in  similarity  to  an  adjacent  non-ensemble



building in combination with an one standard deviation decrease in size reduces the discount

by 2.7%. Conversely, a small building next to a distinctly different building experiences an

even higher price discount.

For about half of the ensembles, the sales sample contains information on property values for

the  adjacent,  non-ensemble  building.  In  a  robustness  test,  we  check  if  the  heterogeneity

discount is lower if the neighboring building is of higher value than the ensemble buildings.

No  significant  effect  of  any  spillover  from  high-value  to  low-value  properties  can  be

estimated, however. Differences in the volume of the ensemble buildings versus the different

shape building (again for all 320 ensembles) do not lead to difference in the heterogeneity

discount either. 

Conclusion

The far reaching question of how the architecture of a building in relation to the shape of its

neighbors codetermines the value of a building has so far not been addressed in a large-scale

and data-driven study.  This paper shows that it is not only feasible but also worthwhile to

empirically analyze the shape of buildings. Existing research on property values has eschewed

three-dimensional building models as an information source since these data do not come in

convenient bite-size formats but have unwieldy “Big Data” properties. City-wide shape data

sets tend to be massive in size, exceeding the computational limits of traditional regression-

style empirics. Furthermore, the data is unstructured and needs interpretation before derived

information on shapes can be linked to other property characteristics.

Extracting  shape  information  is  not  “Big  Data”  wizardry,  however.  Condensing  building

models to shape distributions reduces the complexity while preserving sufficient information

to  estimate  the  degree  of  similarity  between  properties.  These  algorithm-based  similarity

estimates are good predictors of human perceptions of similarity. This opens up new avenues

of  research  not  only  in  real  estate  finance  and  economics,  but  also  in  the  domain  of

architecture, urban planning or sustainability. 

Ultimately, this paper presents empirical support for the notion that architectural homogeneity

is positively valued in residential property markets. Rowhouses surrounded by other buildings

of  the  same shape carry  an economically  and statistically  significant  premium of  several

percentage points vis-à-vis comparable buildings in heterogeneous rows of houses, which can

be interpreted as evidence for benefits of enforcing coordination between developers of new

buildings and owners of existing stock. After all, the value of buildings we live, work and are

invested in largely depends on the architectural choices of neighbors. 

Whether this preference for shape homogeneity is specific to Dutch home buyers or whether

the positive attitude towards ensembles of similar shapes is universal remains a question for

follow-up  studies  in  other  markets  and  cultures.  Additionally,  considering  the  shape  of

properties in empirical price estimations could put a price tag on certain architectural forms

and could lead to more accurate marginal price estimates for attributes like housing type, year

of construction, or location which are closely correlated with architecture.
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Figures and Tables 

Figure 1: Basic solid geometries and their representation as a shape distribution
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Notes: The distributions are  normalized by dividing all  distances  by average distance  per  shape before
estimation of the density functions. The density functions of three basic shapes show very distinct profiles
with cubes having the most pronounced peak. Rectangular shapes exhibit flatter space distributions with a
hump in the right tail. 



Figure 2: Spatial distribution of buildings and transactions in city of Rotterdam

Notes: The gray areas indicate all buildings from Rotterdam's 3D city map. The black areas represent the final

sample of single family homes for which transaction data is available in 2006-2013. Solid lines mark the official

neighborhood boundaries. The majority of residential transactions can be found in the residential neighborhoods

in Rotterdam proper in the east,  while  the west  is  dominated by the harbor, infrastructure,  warehouses and

industrial properties.

Figure 3: Shape distributions of single family homes in sample (Rotterdam, 2006-2013)
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Notes: The shape distributions of all 6,129 buildings in the sample exhibit substantial heterogeneity, indicating a
large diversity in the shapes of the single-family homes in Rotterdam. At the same time, the darker areas in the
figure show a clustering around typical distributions – despite all uniqueness, building exteriors appear to be
variations of a limited number of typical architectural forms.



Table 1: Distribution of Shape similarity S across all Rotterdam buildings

Min 1st Quantile Median Mean 3rd Quantile Max SD

All buildings 0.21 0.69 0.77 0.76 0.84 1.00 0.11

Cube-shape buildings 0.60 0.94 0.96 0.95 0.97 1.00 0.03

Notes:  The pairwise  shape  similarity  measure  S is  calculated  for  all  combinations  of  185,914 buildings  in

Rotterdam. The distribution of similarity values clearly differs from the distribution for cube-shaped buildings,

which display higher levels of similarity. Overall, 1,229 buildings are classified as having a cube shape: they

consist of exactly 4 walls, a roof and ground plate which are all squares and of similar size. The difference in

means between non-cube and cube-shape buildings is statistically significant (t-value = 3,828). 

Table 2:  Mean values for hedonic attributes and distribution of house types across shape
clusters

Cluster Count Mean % House type
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1 319 285 148 128 428 7.7 5.2 3.0 1963 0.3% 0.3% 0.6% 2.2% 96.6%

2 581 303 151 127 439 7.7 5.5 3.2 1956 0.2% 0.2% 0.9% 0.7% 98.1%

3 406 286 131 208 392 7.3 4.6 2.5 1960 7.1% 15.8% 21.2% 5.9% 50.0%

4 860 322 140 275 403 6.6 5.1 2.8 1959 7.8% 19.3% 50.5% 2.3% 20.1%

5 491 248 123 165 351 6.4 5.1 3.0 1961 0.0% 0.2% 1.0% 0.8% 98.0%

6 800 301 141 181 406 6.8 5.3 3.1 1961 0.1% 7.0% 42.5% 1.9% 48.5%

7 716 259 133 151 378 7.1 4.8 3.0 1967 0.3% 1.0% 11.7% 2.5% 84.5%

8 319 194 101 179 281 6.4 4.1 2.1 1975 0.0% 1.3% 6.6% 0.3% 91.8%

9 785 284 137 146 396 6.9 5.4 3.2 1958 0.0% 0.1% 0.3% 0.5% 99.1%

10 849 365 153 273 450 7.0 5.1 2.8 1968 11.7% 24.4% 38.9% 6.8% 18.3%

Total 6,126 294 138 192 400 7.0 5.1 2.9 1962 3.3% 8.3% 21.4% 2.5% 64.54%

One-way analysis of equal means, F-value Chi-squared test of independence

89 96 62 96 159 64 145 22  Χ2 =3333.4, df = 36

Notes: Properties are grouped based on their shape distributions using the k-means clustering algorithm
(k=10). The values for core hedonics differ across shape clusters. The equality of means can be rejected,
with all F values exceeding 22 in one-way analysis (num. df = 9, denom. df = 2,163). Also, housing types are
not equally distributed across clusters (Χ2 =3333.4, df = 36).



Table 3: Spatial correlation in building shapes

Shape cluster
Same-shape

statistic Expectation Variance P-Value

1 42.48 8.48 1.18 0.00

2 99.19 28.19 3.60 0.00

3 60.71 13.75 1.86 0.00

4 131.95 61.79 7.21 0.00

5 85.88 20.12 2.64 0.00

6 101.44 53.46 6.36 0.00

7 119.51 42.82 5.24 0.00

8 57.81 8.48 1.18 0.00

9 153.00 51.48 6.15 0.00

10 132.11 60.22 7.05 0.00

Notes: Joint count tests under nonfree sampling (Cliff & Ord, 1981) suggest that buildings of similar shapes
tend to be close to each other. The odds of observing buildings from identical shape clusters within 100 m
off each other are 2.8 times higher than expected under the assumption of random spatial distributions. The
same-shape statistics are statistically highly significant. 

Table 4: Automatic vs. human classification

Automatic classification (WS)

Different Similar

Classification by 
survey respondents

Different 193 56

Similar 9 116

 
Notes: Overall, 374 pairs of buildings have been classified by human subjects as either being similar or different.
The  corresponding  values  in  similarity  matrix  WS  show  that  the  automatic  shape  comparison  leads  to
classifications that are, on average, similar to classifications by humans. X2 = 162.81, df = 1, p-value < 0.001.



Table 5: Regression coefficient estimates 

I II III IV

Variable Coeff. SE P-Val. Coeff. SE P-Val. Coeff. SE P-Val. Coeff. SE P-Val.

Const. 12.510 0.015 0.000 *** 12.631 0.016 0.000 *** 8.399 0.069 0.000 *** 8.475 0.072 0.000 ***

Year of sale (vs. 2006)

2007 0.013 0.010 0.211 0.019 0.010 0.047 * 0.018 0.008 0.019 ** 0.019 0.008 0.016 **

2008 0.047 0.011 0.000 *** 0.049 0.010 0.000 *** 0.044 0.008 0.000 *** 0.046 0.008 0.000 ***

2009 -0.003 0.011 0.766 0.003 0.011 0.748 0.006 0.009 0.461 0.008 0.009 0.357

2010 -0.005 0.012 0.668 0.000 0.011 0.993 0.008 0.009 0.382 0.009 0.009 0.311

2011 -0.014 0.012 0.257 -0.012 0.011 0.282 0.006 0.009 0.525 0.006 0.009 0.505

2012 -0.082 0.012 0.000 *** -0.079 0.011 0.000 *** -0.050 0.009 0.000 *** -0.050 0.009 0.000 ***

2013 -0.122 0.016 0.000 *** -0.131 0.016 0.000 *** -0.102 0.013 0.000 *** -0.106 0.013 0.000 ***

Type (vs. detached)

Corner -0.207 0.016 0.000 *** -0.212 0.016 0.000 ***

Terraced -0.269 0.016 0.000 *** -0.274 0.016 0.000 ***

Semi-det. -0.088 0.017 0.000 *** -0.095 0.017 0.000 ***

Linked-det. -0.216 0.021 0.000 *** -0.226 0.021 0.000 ***

ln(int. space m2) 0.741 0.015 0.000 *** 0.725 0.016 0.000 ***

ln(lot size m2) 0.039 0.003 0.000 *** 0.039 0.003 0.000 ***

ln(Volume) 0.247 0.036 0.000 *** 0.252 0.038 0.000 ***

Year of construction (vs. before 1906)

1906-1930 -0.013 0.016 0.413 -0.014 0.015 0.364

1931-1944 0.018 0.017 0.303 0.006 0.017 0.738

1945-1959 0.025 0.019 0.192 0.018 0.020 0.365

1960-1970 -0.054 0.021 0.010 ** -0.055 0.021 0.010 **

1971-1980 -0.090 0.021 0.000 *** -0.080 0.021 0.000 ***

1981-1990 -0.071 0.019 0.000 *** -0.063 0.019 0.001 ***

1991-2000 0.094 0.019 0.000 *** 0.086 0.019 0.000 ***

Yoc ≥ 2001 0.102 0.020 0.000 *** 0.095 0.021 0.000 ***

Yoc unknown 0.007 0.187 0.972 -0.056 0.186 0.763

λW spat. 0.805 0.000 *** 0.699 0.000 *** 0.637 0.000 *** 0.609 0.000 ***

λWS shape 0.286 0.000 *** 0.120 0.030 **

R2 0.716 0.740 0.838 0.840

Adj. R2 0.716 0.740 0.837 0.839

Notes: N=6,126.



Table 6: Regression Estimates for Architectural Homogeneity Premium

I II

Variable Coeff. Robust SE P-Val. Coeff. Robust SE P-Value

Const. -0.040 0.015 0.008 *** -0.038 0.015 0.011 **

IntSpaceRatioCB 0.015 0.010 0.132 0.008 0.009 0.370

SizeC 0.033 0.012 0.008 ***

Shape SimilarityCD 0.007 0.007 0.327

SizeC*Shape SimilarityCD -0.027 0.008 0.001 ***

Controls for different 
years of sale (YBC)

YES YES

Notes: N=320, df=193 and 196. The dependent variable  PriceRatio (PriceC/PriceB)  is normalized (mean: 0).
Independent variables are all standardized (mean: 0, SD: 1). Panel (I) presents the estimated coefficients from a
reduced version of Eq. 5. The negative constant indicates a price discount of ensemble-buildings at the periphery.
The P-values are calculated based on robust standard errors (White's estimator). The full model (II) confirms a
negative constant and an overall discount (-3.8%) for a location at the periphery. Larger homes are less sensitive
to the influence of difference in architecture: An one standard deviation increase in the interior floor space of the
ensemble buildings offsets the effect already (+3.3%). Also, small rowhouses are more sensitive to the degree of
shape similarity to neighboring structures. An one standard deviation increase in similarity to an adjacent non-
ensemble building in combination with an one standard deviation decrease in size reduces the discount by 2.7%.



Appendix 1 (for referees)
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