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impacts of dam construction in the Global 
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ABSTRACT 

Governments adapting to and mitigating climate change face trade-offs between the local 

impacts of infrastructure designed to address it and national action plans. Reservoir dams are 

one example of such infrastructure, having profound social and environmental impacts. The 

literature is inconsistent on the socio-economic impacts of dams and opinions vary widely. 

Thus, this study investigates the local socio-economic impact of large dam construction on 

surrounding areas in the Global South. It uses annual night time lights at a 1 km resolution, 

which correlates to GDP, to understand changes in socio-economic activity. It compares areas 

where dams have been built before and after construction to areas where dams will be built. 

The sample of 145 dam sites is drawn from reservoir dams constructed between 2005 and 2009, 

compared to control sites that were constructed from 2013 onwards. Results show that dams 

decrease socio-economic activity 15 km around the dam site, an effect that can be observed up 

to 50 km from the dam and that persists for at least three years. The effect decreases with 

distance and increases over time, patterns suggest that migration and inundation are drivers. 

Results show that dams fundamentally shift socio-economic dynamics, which should be 

considered when evaluating their trade-offs. 
 

 

 

 

 

 

 

 

 

 

 



 5 

1. Introduction 

The Anthropocene era requires urgent action for climate change adaptation and mitigation 

(Arsel, 2022; Biermann et al., 2012; Robbins & Moore, 2013). Energy, water, and food 

consumption continue to increase globally, posing significant environmental challenges 

(IPCC, 2023). Mitigating climate change will require further investment in infrastructure for 

adapting to and mitigating the impacts of climate change on water, energy, and food (Granoff 

et al., 2016; Shi et al., 2019). This infrastructure has and will involve significant trade-offs 

socially and environmentally (Howe et al., 2014) between food and power, free-flowing rivers 

and food security (Legese et al., 2018). 

Reservoir dams were first built for irrigation and flood control, then energy and since 

the 20th Century, more ambiguously, for development (Biswas, 2012). In recent years they are 

increasingly developed as infrastructure to address climate change and have been 

experiencing a renaissance (Moran et al., 2018). One body of literature, particularly from 

political ecologists, critiques the power asymmetries between developers and impacted 

communities and the differentiated environmental and social impacts of dams (Huber et al., 

2017; Jiménez-Inchima et al., 2021; Lavers & Dye, 2019; Nüsser, 2003). A second body of 

literature observes that large dams are the “best available option” to meet “water, food, and 

energy demands” (Shi et al., 2019). Reservoir dams are presented as the lesser of two evils 

compared to the pollution involved in battery manufacture for energy storage (Tahseen & 

Karney, 2016). Chen et al. (2016) argue that dams are vital for development, while Biswas 

(2004) suggests that there is no single solution for development but instead that reservoir 

dams should be considered as one possible option. However, both sides agree that dams may 

profoundly impact the environment and people (McCully, 2001; Petsch, 2016; L. Poff & Hart, 

2002; N. L. Poff et al., 2007; T. Scudder, 2012). The debate remains whether hydropower is 

"worth it” (Mayer et al., 2021), with clear stances on both sides but significant nuance in 

understanding the varied opinions (Ansar et al., 2014; Baghel & Nüsser, 2010; Biswas & 

Tortajada, 2012; J. Chen et al., 2016; Schulz & Adams, 2019; T. T. Scudder, 2010; Tortajada, 

2015; World Commission on Dams, 2000).  

One area where there are divergent views is the socio-economic impacts of dams on 

project-affected people around the dam site (Ansar et al., 2014; Bhatia & Malik, 2007; Ghimire 
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& Kim, 2018; Tortajada, 2015). Literature which considers socio-economic impacts at the local 

scale is often based on an analysis of one or a small number of case studies (Fan et al., 2022; X. 

Zhao et al., 2020). In contrast, comparison studies of dams within or between countries are 

carried out at the national or regional scales (J. Chen et al., 2016; Sovacool and Walter, 2018).  

This study describes the local socio-economic impact of large dam construction on the 

surrounding area in the Global South. It exploits the natural variation in timing when 

reservoir dams have been built, to compare the socio-economic activity around where dams 

have been built to the socio-economic activity in areas where dams will be built. It uses 

satellite imagery – Night Time Light (NTL) – to understand changes in socio-economic 

activities. NTL enables comparisons to be made across different countries and within 

countries without being dependent on economic assessments of different cadences and 

methodologies. The sample of 145 dam sites is drawn from the Global Reservoir and Dam 

(GRanD) database (Beames et al., 2019) in the Global South for dams constructed between 

2005 and 2009 (treated sites) and those that will be constructed after 2013 (control sites). 

This study contributes to previous literature in various ways. First, it describes a trend 

in socio-economic activity between 2004 and 2009 within 15 km of dam sites in the Global 

South. This is the first inter-country comparison on this topic made at a local scale in this 

timeframe. Second, it investigates the time and distance over which the effect attenuates, 

which adds robustness to the study. Finally, it makes a methodological contribution by 

addressing some critiques on using NTL as a panel dataset in economics. Locally impacted 

people’s opinions are linked to the impacts they experience (Mayer et al., 2021; Wiejaczka et 

al., 2018); therefore, this study articulates the trade-offs around reservoir dams for better 

governance, making a policy contribution. 

Results reveal that large dams decrease NTL activity in the dam site immediately after 

construction and, therefore, socio-economic activity. The impact attenuates over three years 

and with distance from the dam. The result contrasts with de Faria et al. (2017) in their study 

of Brazilian counties hosting large hydropower plants; they found ephemeral but positive 

impacts for 15 years or less. It is comparable to the notable Duflo and Pande (2007) study in 

India, which showed rural poverty increased in the districts that hosted dams but decreased 

in downstream districts.  
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Theory 

The landmark World Commission on Dams (2000) report - a multi-stakeholder report on large 

dams - said: “Poor accounting in economic terms for the social and environmental costs and 

benefits of large dams implies that the true economic efficiency and profitability of these 

schemes remains largely unknown.” Despite twenty further years of research, the debate is 

still intense on this topic and “emotional” (Biswas, 2004), and ideological (Lavers & Dye, 2019). 

Ansar et al. (2014) asked, “Should we build more large dams?” in their study on 245 dams. 

They found dams are not economic due to cost overruns, even when not considering the social 

and environmental costs, drawing on project documentation. Another study by Chen et al. (J. 

Chen et al., 2016) published a year later asked, “Should the construction of large dams 

continue?” and used the correlation between over 32,000 dams (built between 1960 and 2010) 

and national-scale data on energy, water and food consumption to state that there was a “close 

association…between dams and socio-economic development”. Contributing to the debate on 

reservoir dam’s effectiveness is evidence that they may worsen water shortages (Di 

Baldassarre et al., 2018) and have not delivered on their irrigation objectives (Higginbottom 

et al., 2021). 

Many individual papers focus on the local socio-economic impacts of large dams at 

the case study level, while some meta-analysis studies examine these case studies as a 

collective body of literature (Biswas, 2004; World Commission on Dams, 2000). However, 

there are limited studies (Castro-Diaz et al., 2022; de Faria et al., 2017; Duflo and Pande, 2007; 

Fan et al., 2022) that look at multiple dams at a local scale using the same metric of socio-

economic performance as measures of socio-economic performance are not standardised 

globally (Fan et al., 2022).  

Here I outline the literature on how large dams might create local socio-economic 

impacts in general, with reference to case studies, meta-analysis and cross-site analysis.  

The first consideration is forced or voluntary migration when an area is inundated 

(Cernea, 2004b; Kirchherr & Charles, 2016; T. Scudder, 2012). An oft-quoted figure from the 

World Commission on Dams (2000) is that dams have displaced 40-80 million people 

worldwide. Although displacement numbers are intensely political (Kirchherr et al., 2019) – 

and variable – for India alone, estimates range from 16-39 million people (World Commission 

on Dams, 2000) – it is clear that displacement is a major consequence of reservoir dams. 
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Inundation when a reservoir is filled will cause displacement, but out-migration from 

the area will not be limited to those whose homes are flooded (Iyer, 2007, p. 165). Push factors 

include environmental issues, such as a reduction in biodiversity from the destruction of fish 

habitats, changing river hydrology and sediment regimes (Hall et al., 2011; N. L. Poff et al., 

2007; Soukhaphon et al., 2021), and new diseases from the reservoir (Hunter, 2003; Jobin, 1999). 

A loss of natural wealth can severely impact the economy (P. Dasgupta, 2021, p. 84). Further, 

the uncertain investment conditions surrounding dam construction and the potential 

inundation of other infrastructure and services may bring a “planning blight” (World 

Commission on Dams, 2000, p. 99). This phenomenon can cause people to be hesitant about 

investing in an area if it may ultimately be flooded and may be especially acute if the 

construction is delayed (Braeckman & Guthrie, 2016). 

While many studies report negative socio-economic impacts at a local scale, there are 

also evidence and theories that impacts are positive or differentiated dependent on context. 

Fan et al. (2022) demonstrate a correspondence between dam construction and economic and 

environmental change, employing NTLs, GDP measures (Kummu et al., 2018) and land cover 

change satellite imagery. In their site-level study on 631 dams from 2001 to 2015, examining 

the correlation between dams and their impacts on population, economy, and the 

environment they found broadly negative impacts in the Global South, including on the 

environment, but broadly positive relationships between the economy and population in the 

Global North. 

De Faria et al. (2016) use an event-study to investigate whether GDP within Brazil's 

counties is related to the construction of 56 hydropower plants in those counties. The authors 

also use an econometric approach to evaluate the post-construction outcomes on socio-

economic conditions such as income and education. They find ephemeral but positive socio-

economic impacts in counties with dams for 15 years or less.  

With new infrastructure, such as dams, comes further infrastructure for construction 

and maintenance. New access roads and services may surround the new dam; thus, one 

expectation is that these additional services may increase socio-economic activity (Bhatia & 

Malik, 2007; Hartmann, 2015).   

New employment opportunities, especially during construction, bring thousands of 

new jobs (Reddy, 2016; World Commission on Dams, 2000, p. 99) and increase local GDP 
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(Bhatia & Malik, 2007; Cai et al., 2011). Renewable energy installations have been shown to 

create almost three times as many short to medium-term employment opportunities as 

conventional fossil fuel ones (Garrett-Peltier, 2017). Reservoir tourism may increase the 

number of visitors to an otherwise remote area (Naithani & Saha, 2018).  

The famous Duflo and Pande (2007) paper showed that agricultural production 

increased downstream of dams in India, alongside decreased rural poverty. Therefore, one 

might expect agricultural production and economic activity to increase. However, there are 

opposing views on this in the literature, through a comparison of project documents and 

satellite imagery in sub-Saharan Africa, Higginbottom (2021) found that actual irrigation 

services from dams were only 16% of expectations. The Duflo and Pande (2007) paper also 

showed an increase in rural poverty in the district that hosted the dam, suggesting that 

proximity is important to realise whether affected stakeholders are “stake-gainers” or “stake-

losers” (Iyer, 2007). 

In summary, there are several mechanisms by which socio-economic outcomes will be 

shaped by large dam construction. These mechanisms pull in different directions and have 

long been contested (World Commission on Dams, 2000, p. 99). Castro-Diaz et al. (2022), who 

investigate trade-offs between different sorts of capital (natural, physical and social) in their 

analysis, argue that no one pathway shapes social outcomes in dams.  It is, therefore, unclear 

what the impact might be at a local scale of large dams in general, contributing to the contested 

debate. However, the literature does suggest that duration since construction and distance 

from construction are significant factors influencing socio-economic experiences. 

2. Data And Methods 

What is the local economic impact of large dam construction on the surrounding area? To 

address this question, I employ the Differences in Differences (DiD) approach. As a response 

variable, I use Night Time Lights between 2004 and 2009, combined with dam locations and 

construction dates, to generate treatment and control sites. This section will outline my data 

sources, provide a rationale for my method choice, and detail my empirical model. 
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2.1 Socio-economic data 

This study uses the Night Time Lights (NTL) from the Defense Meteorological Satellite 

Program (DMSP) Operational Linescan System (OLS) satellite imagery to understand socio-

economic activity (C. D. Elvidge et al., 2012; Huang et al., 2014). Multiple authors have 

connected NTLs to socio-economic activity  (Doll et al., 2000; Gibson et al., 2020; Henderson 

et al., 2012; Michalopoulos & Papaioannou, 2017). NTLs have been used as a substitute for 

GDP when there are temporal or spatial gaps (Kocornik-Mina et al., 2020), correlated with 

traditional measures of socio-economic development at a country scale (Proville et al., 2017) 

and in India at the district scale (Singhal et al., 2020). The dataset is also valuable for 

investigating electrification (Bargain et al., 2023), well-being (Ghosh et al., 2013) and poverty 

(C. Elvidge et al., 2009; Smith & Wills, 2018). Previous scholars (Sigman & Olmstead, 2015) 

have measured the socio-economic impact of drought using NTL and how impacts are and 

are not mitigated by proximity to dams. 

The DMSP NTL data is derived from six non-consecutive satellites available between 

1992 and 2013 (see Figure 4 in Appendix 6.2). Images have been pre-processed into annual 

cloud-free composites with a 30 arc-second resolution (930 m2 at the equator) downscaled 

from an onboard sensor spatial resolution of 2.7 km x 2.7 km at the nadir1 (Gibson et al., 2020). 

NTL DMSP was originally used and analysed for meteorological purposes and requires 

further processing for use as socio-economic data. First, the phenomenon of overglow - where 

NTL from one pixel may spread into an adjacent pixel – should be addressed, especially when 

working at fine scale (Gibson et al., 2020). I applied the Abrahams et al. (2018) approach to 

deblur the data to address this issue (details are in Appendix Error! Reference source not 

found.). Second, there is an issue with using data as a time-series, as data between satellites 

do not have standardised light measures, such as lumens (Hsu et al., 2015; Wu et al., 2013). I 

chose to use one satellite of the available six – F16 – (see Appendix 6.9) rather than calibrating 

between satellites, as the deblurring step rendered the calibration method available in the 

literature inappropriate. This restricted the time period of my investigation to 2004-2009.  

The dataset is geographically and temporarily available for the entire area under 

investigation – the Global South – at the local scale. This made it preferable to national scale 

 
1 the area directly below the satellite position when it captures the image. 
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measures such as those available form the World Bank, often employed in socio-economic 

development investigations (Azevedo, 2020). By using NTL, I believe I make a first inter-

country fine-scale analysis of the relative impact of dams on local socio-economic activity 

within this timescale. Descriptive statistics of the NTL dataset by dam location and 

construction dates are in Table 2, and by calendar year in Table 13 in Appendix 6.1. 

2.2 Dam locations and construction dates 

For dam geolocations and construction dates, I use the Global Reservoir and Dam Database 

(GRanD 1.3) (Lehner et al., 2011). The dataset has metadata on data quality, reservoir size, 

dam height, construction date, and spatial polygons representing reservoir boundaries 

(Beames et al., 2019). Only dams with over 0.1 cubic kilometre reservoir storage capacity are 

included, meaning large run-of-river schemes are excluded from this study. The social, 

environmental, and economic dynamics of large dams have been shown to differ from those 

of smaller infrastructure (Vedachalam and Riha, 2014; Harlan, Xu and He, 2020). Large dams 

dominate in terms of the services dams provide. In India, 1% of large dams provide 63% of 

effective water storage (National Register of Large Dams, 2018 quoted in Palmer-Jones, 2021).  

GranD 1.3 provides a quality index for all the dam sites. I excluded "fair," "poor," or 

"unreliable” records. Only "good" or "verified" records were included, indicating that the 

location and data were deemed reliable or better (Beames et al., 2019). While this resulted in 

a smaller working sample, it ensured confidence in the location of the dams and reservoir area 

size, which is critical to the analysis. The study follows a similar approach to Fan et al. (2022), 

but those authors used the WRI Global Database of Power Plants, which did not have the 

necessary metadata for this study (Byers et al., 2021).  

A country comparison is in Table 10; China dominates the sample, with 62 of the 145 

dam sites. Table 8 and 9 (Appendix 6.1) give characteristics of the treated and untreated 

groups. Numeric time-invariant characteristics, reservoir size and dam height will be used to 

adjust for pre-treatment and treatment group outcomes. Summary statistics of lit cells within 

15 km of the dam site for both treatment and control groups are provided in Table 2. 

My identification strategy (Table 1) exploits the different years in which large dams 

are constructed. I use dam sites that have yet to be constructed during the investigation period 
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but will be constructed from 2013 up to 2017 as controls. I use dam sites constructed between 

2005 and 2009 as treatment sites, corresponding to the available NTL time-period. I exclude 

dam sites constructed in 2004, even though they overlap with the time period, as I cannot 

observe their untreated state.  

 

To adopt a conservative approach, I have excluded dam sites from 2010 to 2012 as 

potential untreated sites. This is to mitigate the risk of potential anticipation effects that may 

have impacted the never treated group. As dams might attract change before construction, I 

allow three years before dam sites are constructed before they might be considered control 

sites. I expect sites constructed between 2005-2009 to be similar to those constructed in 2013-

2017, which is the basis of this natural experiment and DiD setup. 

Table 1. Identification strategy based on dam site construction years, NTL – Night Time 

Lights – will be used to assess socio-economic impacts. 

Construction 

year 

Number of 

potential dam 

sites 

Consideration in 

model set-up 

Justification 

2004 13 Excluded  Untreated status unobserved 

2005-2009 102 Treated Constructed when NTL available 

2010-2012 58 Excluded Excluded in case there is an 

unobserved anticipation effect of 

construction. 

2013-2017 43 Never-treated 

controls 

Sites where dams have been 

constructed, therefore location is 

known. 

 

Table 2. Descriptive statistics of NTL response variable - natural log of the number of lit 

cells within a 15 km radius of a dam by dam site construction year. Construction year is 

the identification strategy of the empirical approach used. 

Construction 

year 

Never-treated Post-treated Pre-treatment 

mean (SD) min max mean (SD) min max mean (SD) min max 

0i 2.13 (1.56) - 5.48       

2005    2.76 (1.25) 0 5.44 3.02 (0.89) 2.20 5.44 

2006    2.13 (1.39) 0 5.08 2.62 (1.00) 0.69 5.05 

2007    1.91 (1.15) 0 3.81 2.01 (1.04) - 3.89 

2008    1.59 (1.30) 0 4.62 1.59 (1.23) - 4.60 

2009    2.70 (1.47) 0 4.82 2.65 (1.22) - 4.89 
 i indicates construction year of 2013 – 2017, set to 0 for all never-treated groups. 
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2.3 Measuring economic activity around dams 

To combine dam location with NTL data, I defined an area of interest around each dam site, 

informed by my pilot interviews with engineers and affected people in 2018 and 2019. The 

area of interest is a fifteen NTL pixel buffer (each pixel is approximately 1km at the equator) 

around the dam site. Following Papaioannou and Michalopoulos (2013), Smith and Wills 

(2018), Proville and Zavala-Araiza (2017) and Gibson (2019; 2017), I identify the number of 

“lit” pixels in my area of interest above a threshold2 and use the sum of the lit pixels in my 

area of interest3 as my response variable. A fuller discussion of how I derive the response 

variable is in Appendix 6.3. 

2.4 Analytical strategy 

To investigate if large dams in the Global South are linked to economic change, I use the quasi-

experimental, natural experiment method Differences-in-Differences - DiD (Angrist & Pischke, 

2008). The concept of DiD is straightforward. For a particular treatment or policy change, a 

group of treated units is compared to a group of similar non-treated units, a control group 

(Wing et al., 2018; Wooldridge, 2016, 2023). The treatment and control groups must have 

“parallel trends”; that is, the response variable for both groups should move in tandem 

without treatment (Callaway & Sant’Anna, 2018; Gipper et al., 2015; Strezhnev, 2017). The two 

groups must also have “common shocks”; shocks must impact both groups in time, impacting 

both groups in the same way (Ryan et al., 2015). If both of these assumptions hold, a difference 

in the difference between the treatment group's trend after treatment and the control group 

trend can be considered the treatment effect. This treatment effect is the change in trend 

between treated and control units over two or more time periods, before and after treatment 

and is known in the DiD literature as the Average Treatment effect on the Treated (ATT). 

The attraction of the ATT is that if the confounding factors are the same between the 

treatment and control groups and change at the same rate over time, then the DiD approach 

 
2 The researcher needs to choose a threshold NTL intensity to determine which pixels are “lit”. I choose 5 as my 

threshold. Prior to deblurring NTL intensity ranges from 0-63 “digital numbers”, but processing deblurring 

increases the range from 0-239, as NTL from overglow is reassigned (stacked) from adjacent pixels to the pixels 

from which the light came see Abrahams et al. (2018) for a discussion. 
3 The response variable is transformed with a natural logarithm. Some sites have zero lit cells in a year. A constant 

of 1 is added to the whole dataset as the natural log of 0 is an undefined number, following Baskaran (2015).  
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will not produce biased results, even if these factors are not directly observed (Cowger et al., 

2022). However, Ryan et al. (2015) note that not all specifications of DiD are equally robust, 

and careful model selection, which includes matching and clustered standard errors improves 

accuracy of estimates.  

In my model, I exploit the different timing of dam construction to determine the 

control group –dam sites that have not yet been constructed in the period of interest – and 

treatment group – dam sites that have been constructed (Table 1). This means that my 

approach has multiple treatment timings and time-periods. Several authors have recently 

criticised using the canonical Two-Way Fixed Effects (TWFE) model for DiD, calculated using 

a regression estimator, when the model has multiple time-periods and treatment timings 

(Baker et al., 2021; Callaway & Sant’Anna, 2020; Goodman-Bacon, 2018; Sun & Abraham, 2020). 

Criticisms include that the TWFE model puts unjustified weight on the middle of the panel 

and that recently treated units are compared to treated units as controls - adversely impacting 

and even reversing measures of ATT (Cunningham, 2020). New estimators have been 

developed to address these critiques in a fast-moving literature (Cunningham, 2020; Dube et 

al., 2022; Wooldridge, 2023). I will follow Callaway and Sant’Anna’s (2022; 2020) approach to 

DiD. While the estimator addresses recent critiques, it does sacrifice control units (Wooldridge, 

2023) but for a more robust outcome.  

The Callaway and Sant’Anna’s approach identifies the “group-time average treatment 

effect”, which is the average treatment effect for treated units that were treated in a specific 

time-period, called a group by the authors, within a time-period. In the context of my study, 

this would mean there would be a different group-time average treatment effect for a dam 

treated in 2005 in 2009 when compared to the group-time average treatment effect of a dam 

constructed in 2006 in 2009. Another way to consider this is to imagine units treated in each 

period as a cohort. The “group-time average treatment effect” is then the specific effect of the 

cohort in a time-period for that cohort’s specific pathway. This allows investigation of 

heterogenous effects between years and treatment groups. Another attractive component of 

the Callaway and Sant’Anna’s estimator (hereafter CS estimator) is its propensity score 

matching of controls to treated units based on independent time-invariant covariates 

(Callaway and Sant’Anna, 2021). 
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2.5 Empirical approach  

To investigate dynamic effects of large dams on socioeconomic activity, I employ Callaway 

and Sant’Anna’s (2021) event-study style estimates for each time period pre and post 

commissioning:  

Equation 1 

  θes
(𝑒): = ∑ 1{g + e ≤ T}P(G = g|G + e ≤ T)ATT(g, g + e)

𝑔∈𝐺

. 

𝐺 is the multiple treatment timings year the dam site is first treated (commissioned), 𝑔 is the 

year of treament for a cohort. 𝑇 is the time period and e is the number of years since the 

treatment event i.e. 𝑒 = 𝑔 − 𝑡. θ𝑒𝑠(𝑒) is the parameter of interest, describing the average effect 

of being treated after 𝑒 numbers of time periods (years in this study), across all groups 𝑔 that 

were treated for this number of time periods.  θes(𝑒) sums the ATT of groups exposed to the 

treatment at event time e, weighted by the probability 𝑃 that the ATT belongs to that group, 

for each group g. The assumption, as for other event studies, is that the term ATT(g, g + e) is 

homogenous for all groups across all numbers of treatment years post-treatment.  

Building the estimator with Callaway and Sant’Anna’s approach requires the 

calculation of the group-time average treatment effect building block (Equation 2). This has 

two features 1) it only makes comparisons between never-treated units and treated units4, 2) 

it uses propensity score matching to improve comparisons between treatment and controls.  

Equation 2 

ATT(g, t)  = E [(
𝐺𝑔

𝐸[𝐺𝑔]
 −

�̂�(𝑋)𝐶
1 − �̂�(𝑋)

𝐸[
�̂�(𝑋)𝐶

1 − �̂�(𝑋)
]

) (𝑌𝑡 − 𝑌𝑔−1)] 

Equation 2 calculates the semiparametric CS estimand via the weighted average of the 

outcomes (Caetano & Callaway, 2023, p. 8; Callaway & Sant’Anna, 2018, p. 3; Le, 2022, p. 12; 

Zeldow et al., 2023, p. 22). Where t is time period of treatment, in my case the year, and 𝑔 is 

the time the unit is first treated i.e., when the dam is commissioned – see Table 1. 𝐺𝑔 is 0 or 1, 

and equal to 1 if cohort g is first treated in time 𝐺. 𝐶 is also 0 or 1, and defines the comparison 

groups or control groups which equal 1 if never treated. �̂�(𝑋) gives the propensity score 

 
4 This can be relaxed in the R package, with yet-to-be-treated units used as the control group. However, I used the 

never-treated group in my primary specification. 
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matching based on co-variates5. Specifications for aggregating the group-time treatment effect 

into meaningful estimates of overall impact and underlying assumptions are in Appendix 6.7. 

This approach has four assumptions. First, units may not be treated in the first time-period. 

In my setting, this means I exclude dams constructed in 2004 – they have no available 

untreated comparison (see also Table 1). Second, the anticipation of treatment is not allowed. 

Anticipation would result in invalid comparisons between the control and treatment groups, 

as controls would not be unaffected by the upcoming treatment6. Third, once instigated, 

treatment cannot be reversed. I should exclude any dams which are decommissioned having 

been commissioned in the time period of investigation. Fourth, the parallel trends assumption 

needs to hold, conditioning on covariates. 

For further equations detailing the doubly robust7 estimator, parallel trends assumptions 

and aggregation equations for the group-time average treatment effect, see Appendix 6.7. 

These steps are all automated in the CS DiD R package (Callaway & Sant’Anna, 2022). 

3. Results 

3.1 Socio-economic activity appears to decrease after dam construction 
for three years 

I present a first attempt to examine the local socio-economic impacts of dams in the Global 

South, at a 15 km radius around the dam, using a Night Time Light dataset as a proxy for 

socio-economic activity between 2004 and 2009. I find that large dams decrease the number of 

lit pixels near the dam site immediately after construction and thus socio-economic activity. 

This impact persists for 3 years. This result is shown visually in the event-study in Figure 1. 

 
5 �̂�(𝑋)  =  𝑃𝑟(𝐺𝑔 =  1|𝑋, 𝐺𝑐 + 𝐶 =  1)  
6 The DiD package allows for relaxing this assumption at the cost of some replicates, I do this as a robustness 

check. 
7 Callaway and Sant’Anna (2020) allow for three potential specifications of their model, outcome regression 

modelling (Heckman et al., 1997), inverse probability weighting (Abadie, 2005) and their own doubly robust 

method which combines these. I choose to use the doubly robust method, as it is consistent even with a degree of 

misspecification. 
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Figure 1. Event study estimates of ATT – average treatment effects on the treated - following 

the Callaway and Sant’Anna (2020) approach. The outcome variable is the ln number of lit 

pixels in annual night time light images in a 15 km buffer around a dam site, 145 dam sites 

were investigated in the Global South. Results show a decrease in night lights around the 

dam sites post-treatment. Pre-treatment group corresponds to dam sites that have not yet 

been constructed, but will be constructed after 2013. Pre-treatment, there is no significant 

deviation from zero, evidence that the assumption of pre-treatment and treatment parallel 

trends being met, a condition of determining the ATT. Standard errors are clustered by 

dam site, bootstrapped at 95% confidence intervals. Control and treatment groups are 

matched on covariates, latitude, reservoir size and dam height.  

3.2 The extent of the decrease in socio-economic activity after dam 
construction varies depending on the year of construction 

The group-time treatment effects, aggregated by year of construction, are presented in Table 3, 

as is the overall ATT -0.44 (p <0.05), which can be considered the main result of this study. 

The ATT represents a decrease in lit pixels in a 15 km buffer around the dam site after 

construction, a portion of which is likely to be due to inundation, investigated in the next 

section.  

There are two important aspects to note about the effect size. First, there is a great deal 

of heterogeneity between years investigated and years of construction (visible in Figure 10 in 

Appendix 6.8), and the event study also shows a temporal variability which is significant. 

Together they suggest that time variant context and time since construction are important in 

shaping the socio-economic outcome of the dam. Second, while the effect size is negative, 

Gibson et al. (2020, p. 962) caution that the absolute values in digital numbers vary between 
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years and locations and cannot be considered as consistent measures of the same light and 

economic effect. A portion heterogeneity in each calendar year could result from this 

inconsistency between digital number measures, but can not be estimated due to unrecorded 

measures on-board the satellite8. This error is expected to be consistent between dam sites and 

treatment groups, but highlights the limitations of using the response variable to interpret the 

exact number of lumens or economic activity.  

I believe the negative trend is the more important aspect of the results, instead of 

absolute numbers for light and economic activity after dam construction. 

While the aggregate ATT is significant, only two of the five investigated construction 

years show a significant ATT (Table 3). 

Given the tight relationship between NTL and electrification (Bargain et al., 2023), and 

the relationship between NTL and socio-economic activity, it suggests communities hosting 

dams experience a decrease in local socio-economic activity. 

 

 

 
8 Day to day adjustments to the gain of the sensor were made for DSMP data dependent on the moon cycle. On a 

full moon, the tops of the clouds (the original purpose of the data collection) were brighter than in a sickle phase 

(Gibson, Olivia and Boe-Gibson, 2020), the gain settings were not recorded on-board. 

Table 3. Average Treatment Effect on the Treated (ATT) of large dams on socio-

economic activity for different construction years and aggregated overall. 

Aggregation level ATT (socio-

economic activity) 

Lower CI Upper CI 

2005 -0.41 -1.21 0.38 

2006 -0.75*  -1.13 -0.36 

2007 -0.44*  -0.87 -0.01 

2008 -0.32 -0.78 0.14 

2009 -0.28 -0.65 0.08 

Overall aggregate ATT -0.44*  -0.62 -0.26 

Notes: Socio-economic activity is measured as the natural log of the number of lit cells in a 15km radius around a dam site. Conditioning 

on covariates using doubly robust estimation methods. Co-variates are latitude, area of reservoir and dam height. Standard errors are 
calculated by bootstrap as discussed in the text and are clustered at the dam site level, 95% confidence. * indicates a significant effect 

(p>0.05). 
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3.3 Investigating inundation and socio-economic activity 

The size of the investigation is approximately 706 km2, I therefore, consider whether the effect 

is driven – simply – by the local area being inundated by the reservoir during construction9. 

Given the linear nature of reservoirs that track the original river line, there is no standard area 

overlap between the buffer around the dam and the reservoirs. In Table 4, I compare the year 

of construction (treatment group and treatment timing) to the percentage overlap between the 

area under investigation and the reservoir outline. This analysis shows that the inundated 

area is moderate but substantive compared to the area investigated. 

I conducted two robustness checks to test the impact of inundation on the treatment 

effect. First, I slice the dataset into two groups – one where the reservoirs are greater than 

12 km2, and one when they are less than 12 km2. This gives 72 “small” reservoir dams and 73 

“big” reservoir dams, divided at 12 km2 as this is the median reservoir size. If inundation is 

alone in reducing the socioeconomic activity, I would expect no significant effect or a smaller 

significant effect corresponding to the small reservoir group. The investigation gives an 

inconclusive result (Table 5). The large reservoir size model (dam sites with the top 50th 

centile reservoir area) does not meet the required parallel trends assumption10. There is a 

significant effect for the small reservoir group – and the effect size is smaller than that for the 

main model (Table 3), which is suggestive but inconclusive that reservoir size is a factor.  

 

 
9 A time-invariant characteristic I use for matching in the first step of the Callaway Sant’Anna estimator is 

reservoir size, however, as reservoirs in control sites are yet to be created, including this covariate does not control 

for variation caused by reservoir size, rather it helps to match related sites which have received and will receive 

dams. 

10 This unlikely to be due to the investigation, but because of the small sample size - there are only 29 dams in the 

never-treated group for large reservoirs. The authors of the DID Callaway package state that small group sizes 

make the statistical inferences unstable (Callaway & Sant’Anna, 2021), which is indeed true of many econometric 

investigations. 

Table 4. What percentage of the area investigated is inundated by reservoir? 

Treatment group Pixels per dam Mean pixel number for 

each reservoir 

% overlap 

Controls 697 27.6 4.0 

2005 697 33.8 4.8 

2006 697 35.6 5.1 

2007 697 20.6 3.0 

2008 697 15.4 2.2 

2009 697 13.8 2.0 
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As a second test I repeat the analysis but mask out those areas which are inundated by 

reservoirs. The expectation is if inundation is the sole factor, the resulting ATT would stop 

being significant when the reservoir areas are excluded. This analysis required me to change 

the response variable from the sum of lit cells within 15 km of the dam to the mean number 

of lit cells within 15 km of the dam so that the response variable was dimensionless11 with 

respect to the area considered (see Appendix 6.4). Excluding the reservoir areas after dam 

construction meant that overall a smaller number of pixels were considered, depending on 

the reservoir size. I excluded reservoir size as a co-variate in the DiD set up. This somewhat 

crude analysis complements sub-setting the data into large and small reservoirs, as in Table 5, 

to give further evidence as to whether reservoirs are driving the decrease in economic activity 

around dams. The group average treatment effect of the treated in this set up gives a negative 

result of -0.18 (p<0.05), and is suggestive that the decrease in socioeconomic activity is not 

merely due to reservoir size. 

 

 
11 When I included all areas within 15 km, I had the same number of pixels for the zonal statistics per site. 

However, when I exclude the reservoir areas after dam construction a smaller and variable number of pixels were 

included, depending on the reservoir size, which is why I took the mean lit number of cells, not the sum. I excluded 

reservoir size as a co-variate in the DiD set up. 

Table 5. Investigating inundation gives an inconclusive result. The large reservoir size 

model (dam sites with the top 50th centile reservoir area) does not meet the required 

parallel trends assumption. The small reservoir size model meets the parallel trends 

assumption and has a similar but smaller effect than the main model. Excluding 

reservoir areas through a GIS mask from the analysis gives a significant negative impact 

on socio-economic activity, using a response variable which is unchanged by the size of 

the spatial area considered. Standard errors are clustered on the dam site level and 

calculated via bootstrap – 95% Confidence Intervals (CI) are given. 

Group Aggregate Group-Time 

ATT (socio-economic 

activity) 

Lower 

CI 

Upper 

CI 

Number of sites 

(never treated 

number) 

Dams bottom 50th centile 

reservoir size 

-0.36* -0.64 -0.07 72 (14) 

Dams top 50th centile 

reservoir size 

-0.63* 

Parallel trends not met 

-0.89 -0.38 73 (29) 

Reservoirs excluded from 

the GIS analysis i 

-0.18* -0.28 -0.09 102 (43) 

I ln mean lit cells rather than ln sum lit cells used as a response variable – therefore, coefficients are not directly comparable 

to the other models where the response variables use sum – see Appendix 6.4. 

* indicates significance (p < 0.05). 
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The impact of dam construction on socio-economic activity strengthens over time, as 

inferred from the decreasing coefficients obtained through the event-study analysis (Figure 1). 

This observation challenges the assumption that inundation alone is the sole cause of the 

observed effect. If inundation were the only factor, one would expect a significant decline in 

socio-economic activity in the first year after construction, followed by a stabilisation once the 

reservoir reached its operational capacity. However, given the limited duration of the 

analysed time period and the variability in reservoir filling time, influenced by factors such 

as rainfall, downstream water demands, and the purpose of the dam (ASDSO, 2014; Wheeler 

et al., 2016), it is problematic to assert categorically that the data supports or refutes this trend. 

Collectively, based on these robustness checks and the event study, I cautiously reject 

the notion that simple inundation is the sole driver of socio-economic activity decreasing in 

the area around the dam, but suggest it is part of the reason, based on smaller reservoir group 

having a smaller effect. This is further supported by the next section, which investigates the 

attenuation of the effect over distance.  

3.3.1 How does the effect change with distance from the dam? 

Based on interviews with engineers and affected communities in 2018 and 2019, I selected 

15 km around the dam to explore socio-economic activity. However, a sensitivity test is to 

adjust the buffer size around the dam site to investigate how this changes the outcome. 

Therefore, I investigate 5 pixels, 10 pixels, 20 pixels, 30 pixels and 50 pixels around the dam 

site in Table 6. Pixel buffers of 5, 10, 20, 30 and 50 all have significant aggregate group-time 

average treatment effects, the size of the effect decreases as the distance from the dam site 

under consideration increases. 

Interpretation of this effect should be cautious. The resolution of the night lights data 

is assumed to be 25 km2 based on Gibson (2020, p. 20); buffering by 5 pixels around the dam 

site gives an area of approximately 79 km2 - at the lower end of what is valid to investigate. 

When considering a 79 km2 area, the impact of reservoir inundation is expected to be 

significant, given the size of the average reservoir in the sample is 44 km2 (see Table 12 in 

Appendix 6.1). The small sample size (n=97) caused by having to remove dam sites that 

overlap with each other (Figure 6) at the 50 km radius means this result should be interpreted 

with caution, but it is within the trend.  
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3.4 Robustness checks 

3.4.1 Excluding an out-of-trend year 

Figure 2. Number of lit cells in 2004 is higher on average than in other years. 

Over the 20th Century, the world has become brighter as light sources increase. However, 

Figure 2 shows 2004 is unusually bright across all dam sites. To understand if this drives the 

trends, I report the calendar year effects with and without 2004 in Table 7. In both scenarios, 

Table 6. The group-time average treatment effect of different radii around the dam, 

conditioned on co-variates. The main model is 15 pixels, as in Table 3, repeated here for 

comparison. The number of sites changes, as those which overlap are discarded, and 

more overlaps exist the wider the area considered around the dam - see appendix 0.  

Radius in 

pixelsi 

Area (km2) 

at the 

equator 

Aggregate Group-

Time ATT (socio-

economic activity) 

Lower CI Upper CI Number of 

sites (never 

treated 

number) 

5 79 -0.63* -0.81 -0.44 176 (57) 

10 314 -0.56* -0.73 -0.39 164 (51) 

15 707 -0.44* -0.62 -0.26 145 (43) 

20 1,256 -0.44* -0.60 -0.28 151 (47) 

30 2,827 -0.33* -0.51 -0.15 138 (42) 

50 7,853 -0.28* -0.46 -0.11 97 (33) 
* significant (p<0.05) 
I a pixel is equivalent to 30-arc seconds, approximately a kilometre at the equator. 

Standard errors are clustered by dam sites and calculated via bootstrap for 95% Confidence Intervals (CI). 
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the effects in 2007, 2008 and 2009 are significant, and the overall trend is downward in lit areas. 

Given the small sample size, this effect could bias the result if it impacted on the never-treated 

group differently to the treated one. However, there does not appear to be evidence of this in 

Table 7. 

 

3.4.2 Including an anticipation effect 

One might expect an increase in socio-economic activity and light sources prior to a dam’s 

construction associated with the construction activity itself. This could be the building of 

roads or the equipment, as well as working at night to construct the dam. The data already 

suggests that there is not an anticipation effect - the confidence bands of the pre-treatment 

periods in Figure 1 cross zero, but investigating anticipation is a worthwhile robustness check. 

I investigate adding two years of anticipation to the model. The outcome of this is an aggregate 

group ATT of -0.39 (p<0.05), the downward trend in socio-economic activity is not altered, nor 

is it clear that there is an anticipation effect. 

3.5 Limitations 

3.5.1 Sample size 

One hundred forty-five dam sites is a comparatively small sample size in econometrics, 

however, the nature of natural experiments is that you cannot control the number of replicates. 

Table 7. Calendar effects with and without the year 2004, conditioned on co-variates. * 

indicates the significance of the effect at p<0.05, standard errors are bootstrapped and 

clustered at the level of dam site. ATT is the average treatment effect on the treated, 

socio-economic activity is the response variable. 

Year  Calendar ATT with year 

2004 

Calendar ATT without year 

2004 

2005  -0.40 (0.22) 
 

2006  -0.18 (0.15) -0.16 (0.18) 

2007  -0.44* (0.15) -0.44* (0.14) 

2008  -0.47* (0.13) -0.50* (0.15) 

2009  -0.68* (0.15) -0.68* (0.14) 
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Chinese dams dominate the sample, with over one-third of the dam sites (Table 10). Therefore, 

Chinese policies may have a disproportionate impact on the results. A future study might 

include the Global North, excluded as the dam-related economic issues to differ between the 

Global North and Global South (Fan et al., 2022).  

Wooldridge (2023) criticises the Callaway approach for being imprecise, given that it 

restricts the potential controls to never-treated. However, in my model, precision is not as 

important as the investigation of a trend, and being sparing in selecting my controls to avoid 

artefacts adds robustness. 

3.5.2  Short time period of investigation 

To focus my study on just one satellite from the available six (as shown in appendix 6.9), I 

only draw inferences about the period from 2004 to 2009, resulting in a limited time frame for 

my event-study. It is not possible to determine if the impact of dam construction is temporary 

due to the limited investigative period, and there may have been some trend within it, such 

as the sensitivity of the NTL to the Global Financial Crisis (GFC) of 2008 (W. Chen et al., 2019; 

Jiang et al., 2021) that could bias my results. An idiosyncratic event such as the GFC may have 

biased my results if the absence of dam construction during the crisis conferred a socio-

economic advantage or disadvantage to the area. A future study and robustness check could 

use the Suomi National Polar-orbiting Partnership satellite VIIRS NTL data (Li et al., 2013), 

which is available from 2011, to investigate more recent trends, following Fan et al. (2022). 

3.5.3 Policy interpretation 

In this study, a challenge with analysing the response variable is its policy interpretation.  The 

response variable is not intuitively interpreted – it is the natural logarithm of the sum of lit 

pixels in an area around the dam, where lit is above a threshold of 5 digital numbers out of a 

potential 63. Gibson’s papers (2015, 2020) caution that the absolute values in digital numbers 

(the metric used onboard the satellite to measure night light) vary between years and locations 

and cannot be considered consistent measures of the same light and economic effect. This 

error is expected to be consistent between dam sites and treatments, but the response variable 

does not correspond to an exact number of lumens or economic activity. Further, Papaioannou 
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and Michalopoulos (2013) found corresponding conclusions but different effect coefficients 

for the two response variables in their investigation employing both NTL intensity and NTL 

lit/unlit pixels. NTL are therefore a less suitable measure of socio-economic activity than GDP 

for this investigation as they do not correspond to a precise value of economic vigour. 

In this study I compare only one type of dam, and one type of energy production and 

water-management infrastructure to one alternative – no dam. It is worth noting that this is 

not a realistic counterfactual for my natural experiment geographically or politically for all 

dam sites. Alternative options include but are not limited to fossil fuel energy infrastructure 

and ground water provision. I also investigate only one sort of dam – one with a significant 

reservoir – when alternatives will have different socio-economic and ecological impacts such 

as pumped-storage hydropower (Richter et al., 2020), smaller cascading dams (Nguyen-Tien 

et al., 2018) and run-of-river dams (Kuriqi et al., 2021). 

3.5.4 Wellbeing impacts 

Through a narrow lens, this study shows that large dams may have small local negative 

impacts on socio-economic activity. Given that lens used to analyse the dam sites is literally 

far removed from the source, it is limited in its ability to understand the lived experience and 

causes of the changes captured. Tortajada (2015) talks about dams for meeting basic human 

needs, she asserts they are essential for development. This study does not investigate human 

needs or causes. Investigating how and why there is a decrease in local socio-economic 

activity around dam construction, and the impacts that this might have on the lived 

experience of people and livelihoods on the ground, is a logical next step of this study.  

4. Discussion 

My study contributes to the contradictory literature on the impact of dams on socio-economic 

activity. Some literature is positive, with authors demonstrating that socio-economic activity 

increases when dams are built in general through direct and indirect benefits through 

employment (Cestti & Malik, 2012; Tortajada, 2015), in one country (de Faria et al., 2017) and 

in specific dams (Bhatia & Malik, 2007; World Commission on Dams, 2000, p. 121). On the 
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other hand, others state that socio-economic activity decreases once a dam has been built in 

the local area, for example, poverty increases in host districts in India (Duflo and Pande, 2007) 

or at the inter-country level (Sovacool and Walter, 2018). 

My study found a local decrease in socio-economic activity that persists three years 

after construction. This contrasts with de Faria et al. (2017) in their study of Brazilian counties 

hosting large hydropower plants who found ephemeral but positive impacts for 15 years or 

less. My finding is comparable to the Duflo and Pande (2007) study in India, which showed 

rural poverty increased in the districts that hosted dams but decreased in downstream 

districts. It corresponds with Castro-Diaz et al. (2022) who discuss how different sorts of 

capital (physical, financial, natural and human) trade-off with negative and positive impacts 

after 33 dams have been built in the Global South. This study captures the physical capital (for 

example roads) and aspects of financial capital (as NTLs measure GDP) - Castro-Diaz found 

37% positive impacts on financial capital and 63% negative in their 33 case studies, using a 

fuzzy-set qualitative comparative analysis. 

I also found that inundation partially explains the decrease in socio-economic activity, 

dams' impact on socio-economic activity decreases with distance, and the effect increases with 

time. This is relevant for the displacement literature (Cernea, 2004a; Hay et al., 2020) and the 

literature on perceptions of locally unwanted infrastructure (Diduck et al., 2013; Safford et al., 

2012; Wiejaczka et al., 2018).  

4.1 Reflections on the scale of investigation and the dam site buffer 

shape 

My investigation does not use a similar scale to those used by previous econometric 

investigations of the local impact of dams, which should be considered when comparing it to 

others. The de Faria (2017) and Duflo and Pande (2007) studies use administrative areas for 

their analysis, which vary in size. Brazilian counties considered by De Faria average around 

1,200 km2 and while Indian districts around 5,000 km2 (MoHA, 2011), both have a large range. 

Bom Jesus, the smallest county considered by de Faria in Brazil has an area of 122 km2, and 

the median county area considered was 500 km2. Thus, while some units considered by these 

two studies were analogous to my own investigation, others were not. Differing results could 

be explained by the scale considered. 
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In addition to scale, the shape of the investigated area may be important in interpreting 

differences between my study and others. For example, administrative boundaries frequently 

follow rivers; thus, when administrative areas are used to aggregate socio-economic data as 

has happened in Sovacool and Walter (2018), De Faria (2016) and Duflo and Pande (2007), 

dams may lie within two jurisdictions compromising analysis. However, the disadvantage of 

my approach is that by not using jurisdictional boundaries my area of investigation around 

each dam site could cut across multiple significant policies and regulations administered at 

the jurisdictional level.  

Studies interpreting socio-economic activity have also used variable response 

variables and sources, which may explain different results to my own. De Faria et al. (2017) 

used GDP figures taken from the Instituto Brasileiro de Geografia e Estatística (IBGE), a 

Brazilian government institution for each county in the analysis (de Faria et al., 2017). Cestti 

& Malik (2012) investigate the multiplier effect of three dams in India, Egypt and Brazil: the 

number of units of currency produced for every unit invested in the infrastructure. They 

estimate changes in productivity in related industries, such as agriculture and electricity, in 

with project and without project scenarios in the host region, at the state level. They report 

positive socio-economic outcomes. In contrast, Sovacool and Walter (2018) who found 

negative “development” impacts when comparing hydropower and non-hydropower 

countries, used World Bank GDP data as a response variable and investigated a different scale, 

the country level. 

While the relationship between NTL and socio-economic activity is confirmed by 

many sources in the literature (Bhandari & Roychowdhury, 2011; Gibson et al., 2020; 

Mveyange, 2015), NTL may detect something other than conventional GDP. Authors have 

proposed that NTLs capture the shadow economy, including informal businesses not 

recorded by official government surveys (Tanaka & Keola, 2017). The shadow economy of 

informal businesses may be important in rural areas where dams are often located; if this 

economy is eroded by dam construction, that would be significant. Energy consumption has 

been used by Basbay et al. (2016) to detect the informal economy when not captured by GDP 

measures, and there is evidence that night-time lights have a close relationship with electricity 

consumption in the Global South (N. Dasgupta, 2022; Zhu et al., 2019). The decrease I detect 

using NTLs after construction might represent a decrease in the informal economy. 
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4.2 Socio-economic activity – reducing or moving? 

Rather than a depression in socio-economic activity – the change in the area around the dam 

I observe could instead be a movement of socio-economic activity away from my investigation 

zone. The most obvious mechanism for this movement would be forced displacement by the 

dam or voluntary migration to a new site for those whose homes have been inundated. 

Whether or not resettled people will be captured within the 15 km radius around the dam site 

will be determined on a case-by-case basis. 

Project-affected people might migrate to urban centres or to other countries, given the 

opportunity of compensation payments or the push of impoverishment at home (World 

Commission on Dams, 2000, p. 115). The socio-economic impact on the migrating people is 

uncertain and cannot be determined by my methodology, nor can my method determine if 

this is the cause. Scholar Del Bene (Del Bene et al., 2018) discusses the “complex social distress” 

which happens in space and time from dams, which my method cannot derive. A great deal 

of tools do exist to determine the impacts of migration (Cernea, 2004b, 2004a; Kibler et al., 

2012; Kirchherr & Charles, 2016; T. Scudder, 2012). An area of further study would be to 

determine the role of migration in shaping the results. 

4.3 Is the effect temporary? 

Figure 1 shows that the longer period since dam construction, the greater the decrease is in 

socioeconomic activity. However, given the investigation was only for four years after 

construction, further examination is impossible, and the last year is insignificant, suggesting 

either the effect might peter out, or the sample size is too small to see a significant effect. If the 

effect does peter out with time, that would tally with De Faria (2017), who found the 

socioeconomic effects of dam construction to be short-lived, noting unlike this study they 

found a positive effect. Extending the time-series would allow me to investigate this 

possibility by the inclusion of the VIIRS NTL series (Li et al., 2013, 2017; M. Zhao et al., 2017), 

in a future study. 
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4.4 Satellite imagery as a tool for measuring socio-economic activity 

My study contributes to the existing literature on evaluating the impacts of dams using 

satellite imagery. Critiques of dams tend towards nuanced political analysis (Bromber et al., 

2014; Dukpa et al., 2019; Huber et al., 2017; Huber & Joshi, 2015; Rai, 2008), and it is important 

to acknowledge that satellites alone cannot provide an understanding of the lived experience 

of these changes, and their geographic limitations prevent a comprehensive assessment of the 

net benefits and costs of dams. However, satellite imagery analysis has been used to 

understand hydrology and related social justice issues in Brazil, demonstrating the drastic 

changes to Xingu River wrought by the Belo Monte Dam and profound impacts on Indigenous 

peoples (Das et al., 2022). Satellite imagery has also been used to investigate the correlation 

between the economy and land cover in recently constructed dams in the Global North and 

South, finding differentiated impacts in those two regions between 2001 and 2015 (Fan et al., 

2022). Finally, using satellite imagery, Higginbottom et al. (2021) showed that African 

irrigation schemes often fall short of projected benefits, raising questions about their potential 

limitations in promoting socio-economic development.  

The aforementioned Higginbottom et al. (2021) study relates to the literature on mega-

project failure and the planning fallacy (Ansar et al., 2014; Warner et al., 2019). While it is 

attractive to relate my findings to this literature, given that my results show large Global South 

schemes do not deliver socio-economic improvement, the scale of my investigation does not 

warrant this. With the exception of employment (Mayer et al., 2021), and tourism (Naithani & 

Saha, 2018) project documents rarely make claims that there will be an improvement to local 

GDP, instead, the focus is on national and regional development (THDC, 2017; World Bank, 

2012). I could make the modest claim that if there are local employment activities and spillover 

effects from dams, this is not offsetting the decrease in socio-economic activity associated with 

dam construction. However, I should also note that given the limitations noted in section 3.5, 

I only make this claim for three years after construction. 

Large dams represent “long-term investments that are hard to erase” (Legese et al., 

2018), whose negative impacts may be felt 1,000 km away (Soukhaphon et al., 2021). Deep 

consideration of socio-economic impacts at different scales will enable the better 

implementation of frameworks to improve governance, for example, around energy justice 

(Siciliano et al., 2018, 2019). A better understanding of impacts is important as people’s 
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perspectives on dams are shaped by how they experience those impacts (Mayer et al., 2021; 

Voegeli & Finger, 2021). A finding of my study is that negative impacts attenuate with distance. 

A significant factor in shaping perspectives and public opinion on energy infrastructure is the 

distance between the public and the infrastructure (Bird et al., 2014). 

Economist Thomas Sowell said “There are no solutions. There are only trade-offs.”, as 

others have articulated (X. Zhao et al., 2020) there are trade-offs in the energy transition, and 

this study suggests the national benefits from large dams trade off with negative 

socioeconomic impacts in the local area around dams. Whether or not those trade-offs are 

worthwhile will be determined by your politics and ideology (Clarke et al., 2016; Dye, 2019). 

Legese et al. (2018) argue that articulating and quantifying the trade-offs is to reveal and 

discuss the “social cost of decisions” as a component of “risk governance” which enables risks 

to be “grasped, maybe minimized, and pushed in this or that direction” whatever ethical or 

political framework is being employed. I hope this paper goes some way towards revealing 

and discussing the trade-offs around large dams. 

4.5 Conclusion 

In conclusion, the conducted research suggests that local communities may lose out when a 

large dam is constructed. This aligns with some literature but contrasts with others and draws 

attention to the trade-offs within the energy transition. Future studies should lean into the 

complexities and avoid win-win narratives to make trade-offs explicit. This study does not 

say who loses or benefits, whether women or men, business owners, or those without land 

tenure. However, it shows that those areas that host dams are fundamentally changed 

compared to their equivalent neighbourhoods in the Global South. 
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6. Supplementary Appendices 

6.1. Summary statistics 

Table 8. Treated and untreated site characteristics 

Treated status Treated Untreated 

Reservoir size km2 (SD) 41 (104) 49 (70) 

Dam height in metres (SD) 98 (59) 119 (78) 

Number of 30-arc seconds pixels per dam site 697 697 

Number of dam sites 102 43 
 

Table 9. Primary use of dams, note all are multi-purpose. 

Main use Treated Untreated Total 

Flood control 10 0 10 

Hydroelectricity 70 32 102 

Irrigation 18 9 27 

Water supply 4 2 6 

Total 102 43 145 
 

Table 10. Countries of treated and never-treated dam sites. 

Country Treated Never-treated Totals 

China 49 13 62 

Vietnam 11 5 16 

Brazil 9 2 11 

Iran 7 8 15 

Turkey 6 5 11 

India 5 0 5 

Saudi Arabia 3 0 3 

Mexico 2 0 2 

Argentina 1 0 1 

Azerbaijan 1 0 1 

Belize 1 0 1 

Chile 1 0 1 

Myanmar 1 1 2 

North Korea 1 0 1 

Oman 1 0 1 

Pakistan 1 2 3 

South Korea 1 0 1 
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Country Treated Never-treated Totals 

Tajikistan 1 0 1 

Bolivia 0 1 1 

Cambodia 0 1 1 

Colombia 0 2 2 

Indonesia 0 1 1 

Malaysia 0 1 1 

Venezuela 0 1 1 

Total 102 43 145 

Table 11. Dam sites with detected lit pixels in any year, where lit pixels are considered to 

be above a threshold of digital number 5. 

Country Never-treated Treated Total 

China 1 1 2 

Turkey 1 0 1 

Vietnam 1 2 3 

Total 3 3 6 

Table 12. Reservoir size in absolute terms in km2 by year of construction, and treatment 

cohort. 

Year of Construction Average reservoir Size (km2) SD reservoir size 

Post 2013 (untreated) 49.6 70.5 

2005 91.2 221.0 

2006 70.9 126.0 

2007 20.1 16.8 

2008 16.3 18.2 

2009 28.4 54.2 

Overall 43.8 95.6 

Table 13. Panel statistics of dam sites, through the years of analysis, by treatment status. 

Mean number of lit pixels (where anything over digital number 5 is lit) in 15 pixels around 

the central dam site pixel – available pixels to be lit is 697. 

Year of  

lights 

Never-treated Post-treated Pre-treatment 

mean (SD) min max n mean (SD) min max n mean (SD) min max n 

2004 21.40 (40.32) 0 189 43     20.82 (33.39) 0 230 102 

2005 19.67 (37.57) 0 186 43 27.83 (55.54) 2 201 12 17.00 (26.59) 0 134 90 

2006 23.81 (46.68) 0 239 43 23.11 (38.91) 0 192 35 15.60 (23.33) 0 121 67 

2007 24.67 (43.98) 0 230 43 19.91 (36.24) 0 221 55 20.51 (28.56) 0 114 47 

2008 23.88 (38.06) 0 188 43 17.93 (33.74) 0 212 75 31.37 (36.61) 0 132 27 

2009 26.72 (35.97) 0 182 43 22.74 (38.71) 0 229 102     



 43 

Table 14. Panel statistics of years of analysis by treatment status. The response variable is 

the natural log of the number of lit pixels within 15 pixels of the central dam site pixel12. 

Year 
Never-treated Post-treated Pre-treatment 

mean (SD) min max n mean (SD) min max n mean (SD) min max n 

2004 1.93 (1.61) 0 5.25 43 
    

2.34 (1.26) 0 5.44 102 

2005 1.89 (1.55) 0 5.23 43 2.52 (1.17) 1.1 5.31 12 2.17 (1.20) 0 4.91 90 

2006 1.93 (1.69) 0 5.48 43 2.48 (1.14) 0 5.26 35 2.13 (1.19) 0 4.80 67 

2007 2.18 (1.58) 0 5.44 43 2.21 (1.31) 0 5.40 55 2.31 (1.29) 0 4.74 47 

2008 2.32 (1.47) 0 5.24 43 2.05 (1.34) 0 5.36 75 2.84 (1.22) 0 4.89 27 

2009 2.55 (1.42) 0 5.21 43 2.16 (1.49) 0 5.44 102 
    

 

Table 15. Treatment and control means of response variable – the natural log of the sum of 

lit cells in the area 15km around the cell. 

 

 

 

 

 

Figure 3 shows some of the dam sites had 0, or no measured light, in the area around the dam 

– 26 out of 145 in 2009. Table 11 shows which countries had sites that had no lit cells within 

15km of the dam, for treated and never-treated groups in all years. It is unlikely that these 

sites truly had no light within them between 2004 and 2009. Therefore, it suggests the 

sensitivity of the satellite night lights is low, but not, I argue, unuseful to investigate my topic 

given light was detected in 139 dam sites. 

 

 
12 A constant of 1 is added prior to logarithm calculation as ln(0) is an undefined number. 

Treated status Mean Standard error 

Treated 2.25 0.05 

Control 2.13 0.10 
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Figure 3. Violin plot comparison of treated and control sites using the natural log of the 

number of lit cells within 15km of a dam - the response variable used in the main model. 

Data points within treated sites are differentiated based on whether or not the dam has 

been or is yet to be constructed, which is part of the identification strategy of the main 

model. Outer lines represent the kernel density – the density of the data at that point on 

the y axis, internal straight lines represent the median and interquartile range. 
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6.2. Night Time Light Satellite overlaps 

There were six satellites within the Defence Meteorological Satellite Program - F10, F12, F14, 

F15, F16, F18.  Some satellites orbited concurrently, therefore a researcher using this data to 

investigate night lights must choose between discarding or combining overlapping data. 

 

Figure 4. Years captured by different Defense Meteorological Satellite Program satellites. 

Gibson et al. (2021) stress that despite being used widely in econometric studies, the raw 

DMSP data is blurred. Three approaches exist in the literature to address the blurring: 

Abrahams (2018), Zheng (2020) and Cao (2019). I follow the Abrahams paper which was 

released with a script on GitHub (Abrahams, 2018). As the datasets used in this analysis cover 

a large geographic region, it was necessary to employ a High-Performance Computing suite 

which significantly increased processing speed. Only an area of 200 km around the dam sites 

was deblurred, as a computational economy. Three geographies were deblurred separately as 

a further economy and then combined, the impact of deblurring is shown in Table 16. 

The deblurring process applies two filters. A lens viewing a point source of light 

expands it into a broader area, and a similar effect occurs when the satellite detects light 

 Satellite ID 

Year F10 F12 F14 F15 F16 F18 

1992 
      

1993 
      

1994       

1995       

1996       

1997       

1998       

1999       

2000       

2001       

2002       

2003       

2004       

2005       

2006       

2007       

2008       

2009       

2010       

2011       

2012       

2013       
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sources on Earth through the atmosphere. The first filter removes this effect which is a 

symmetric Gaussian light point-spread phenomenon. The second filter adjusts the Gaussian 

point-spread size. The light point-spread phenomenon is inconsistent across geographies, 

satellites and years, and the second filter calibrates and corrects the symmetric Gaussian 

point-spread for that particular region. For further details, see Abrahams (2018) and the source 

code on Github (Abrahams, 2018). 

Table 16. The sum of lights, means and distributions from the three geographic regions of 

satellite F16 that were deblurred for this study. In Appendix Error! Reference source not 

found., I compare the specific maps before and after deblurring.  

 
Africa/Europe 

deblurred 

Asia/Australasia 

deblurred 

South America 

deblurred 

Combined 

deblurred 

Blurred 

Year Sum of 

Lights 

Mean 

(SD) 

Sum of 

Lights 

Mean 

(SD) 

Sum of 

Lights 

Mean 

(SD) 

Sum of 

Lights 

Mean 

(SD) 

Sum of 

Lights 

Mean 

(SD) 

2004 12,401,

088 

1.6 

(11.8) 

23,622,

482 

1.7 

(11.8) 

11,419,

664 

1.6 

(12.3) 

47,443,

234 

1.7 

(11.9) 

52,875,

175 

1.9 

(6.2) 

2005 11,171,

652 

1.5 

(11.1) 

19,835,

048 

1.5 

(10.5) 

10,110,

952 

1.5 

(11.3) 

41,117,

652 

1.5 

(10.9) 

45,901,

986 

1.6 

(5.7) 

2006 13,249,

118 

1.8 

(12.7) 

23,138,

441 

1.7 

(11.9) 

11,743,

208 

1.7 

(12.8) 

48,130,

767 

1.7 

(12.4) 

52,813,

284 

1.9 

(6.4) 

2007 14,473,

572 

1.9 

(13.1) 

26,096,

621 

1.9 

(12.5) 

12,546,

494 

1.8 

(13.4) 

53,116,

687 

1.9 

(12.9) 

61,348,

983 

2.2 

(6.8) 

2008 14,698,

471 

1.9 

(13.2) 

26,639,

602 

2 (12.6) 12,508,

152 

1.8 

(13.5) 

53,846,

225 

1.9 

(13.0) 

59,124,

925 

2.1 

(6.8) 

2009 14,253,

846 

1.9 

(13.2) 

26,489,

244 

2 (13.0) 12,859,

904 

1.9 

(13.7) 

53,602,

994 

1.9 

(13.3) 

54,362,

682 

1.9 

(6.7) 

 

Deblurring the NTLs transforms it by restacking pixels which blend into adjacent pixels. To 

avoid further artefacts from this transformation, I use “lit” or “unlit” pixels as my response 

variable, based on a threshold of digital number 5. This means that I am less beholden to the 

aberrations in specific pixels, which skew the data, with high sum values above 63 generated 

by the deblurring script.  

Some authors apply inter-calibration formula after deblurring (Ch et al., 2021), 

however, as noted by those authors, the satellite inter-calibration methods available from the 

literature are based on equations for the blurred values. Therefore, I believe the deblurred 

values are unsuitable for satellite annual inter-calibration methods in the literature (Hsu et al., 

2015; Wu et al., 2013). Notably, the inter-calibration issue for satellite F15 is particularly acute 

for the years 2000-2002, light intensity for those years is noticeably higher than from 2003 to 
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2007 (C. Elvidge et al., 2014, p. 104). While F15 would have been a preferable dataset to work 

with over satellite F16 regarding its more extended time series, it was not in terms of the 

potential bias introduced by this calibration issue.  

Figure 5. The impact of deblurring on the area immediately around the Tehri reservoir for 

each year, using the approach described in Abrahams (2018). Pixels are blue and “lit” if 

they exceed or equal to 5 digital numbers. 
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*Note that due to the percentage cloud cover data being missing for 2011, it was not possible 

to deblur the year 2011. As a result, it is missing from this figure (Earth Observation Group, 

2023). 
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6.3. Creating zones of investigation around dam locations 

Previous studies have used administrative boundaries as the limit of their zone of 

influence around a dam (de Faria, 2016; Duflo and Pande, 2007; Sovacool and Walter, 

2018). A weakness of this approach is that there may be intra-provincial and certainly 

intra-national variations in dam impact. Further, rivers may make up administrative 

borders, complicating analysis when dams are between two counties or districts used as 

units of aggregation for socio-economic data. 

The 1992-2013 NTL are available as GeoTIFFs with a resolution of 30-arc seconds, 

although Gibson et al. (2020, p. 20) suggest that the accurate and appropriate resolution 

of DMSP night lights data would be 25 km2 given geolocation errors and how the data 

is smoothed and processed onboard the satellite. Unlike studies which use 

administrative boundaries by necessity, those employing NTL need to define the area of 

investigation. There is no internationally recognised zone of influence around a dam in 

the Global South, although there are national definitions, such as the “command area” 

in India (Kumar and Shivasharanappa, 2014). The zone of influence is likely related to 

the dam's functions, i.e., irrigation or hydropower. Based on interviews, I chose a 15 cell 

buffer around each dam site (Figure 7), equating to approximately 706 km2 circles of 

investigation. 

Dam sites overlapped in the sample given their locations once 15 cells were 

considered on all sides of the dam site point. Therefore, I had to exclude some dams from 

the sample. This meant the final sample was smaller than total number of dam sites 

eligible. The dams excluded due to overlap were chosen randomly by a script run in 

GRASS GIS (GRASS Development Team, 2017) – see Figure 7. 

As a robustness check, I also consider pixel radii of 5, 10, 30 and 50 (Figure 7), 

allowing an investigation of how the impact of distance on dam impacts.  
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Figure 6. If dam sites were within 30 pixels of each other, then only one per group 

would be included in the analysis. This figure shows a region in Viet Nam, and dam 

sites considered for inclusion are highlighted in yellow, those sites within 30 km of 

each other outlined in black were excluded.  
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Figure 7. Illustration of the different pixel numbers around two dam sites in China 

(Zipingpu and Qiaoqi). The pink area is 15 pixels around the dam site, forming the 

main model. Chengdu city is visible in the Eastern corner. 

6.4. Log transformation of Night-Time Light data 

Researchers can derive multiple potential socio-economic indicators from the NTL 

dataset, for example, sum of NTL intensity, inequality by combining the NTL data with 

population datasets (Gibson et al., 2020) or a comparison of unlit/lit pixels. In their paper 

on pre-colonial Institutions and post-colonial development Papaioannou and 

Michalopoulos (2013) did not find coefficients with opposite signs when employing NTL 

intensity or lit/unlit pixels as response variables in their investigation of development 

and pre-colonial institutions. However, the effect size was different between the two 

response variables. 

Prior to deblurring, NTL intensity ranges from 0-63 digital numbers, but 

deblurring increases the range from 0-239, as NTL from overglow is reassigned (stacked) 

from adjacent pixels to the pixels from which the light came see Abrahams et al. (2018) 

for a discussion. Using nighttime light intensity would skew my interpretation, as the 
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range of digital numbers is not constant between years after deblurring. Therefore, 

following Smith and Wills (2018) and Gibson (2019; 2015) I identify the number of “lit” 

pixels in my area of interest. I consider the pixel ‘lit’ if it has an NTL intensity of 5 digital 

numbers or more.  

 

Figure 8. Comparison of untransformed data – sum of lit cells in 15 km - and 

transformed natural log sum lit cells across all treated and untreated sites. To avoid 

log(0), a constant of 1 is added to all site values before the logarithm is derived. 

 

Figure 9. Comparison of untransformed data – mean of lit cells in 15 km - and 

transformed natural log mean lit cells across all treated and untreated sites. To avoid 

log(0), a constant of 0.01 is added to all site values before the logarithm is derived. 
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However, lit pixels in my sample are not normally distributed, therefore, I 

transform the response variable with a natural log prior to use (see Figure 8). There are 

dam sites with no recorded lit cells, which have a value of 0. As the logarithm of 0 is 

undefined, I add 1 to all dataset values, following Baskaran (2015).  

For the model set up where the reservoirs were masked and excluded from the 

analysis, I changed the response variable from a sum of lit cells to the mean of lit cells, 

as the number of cells considered in the sum within 15 km would be different once the 

reservoirs were excluded. I took the natural log of the mean and added a constant of 0.01 

to address 0 as an undefined number. The transformed mean data (Figure 9) is not as 

close to a normal distribution as the transformed sum (Figure 8) and is a less desirable 

response variable. 

6.5. Potential treatment endogeneity  

My identification strategy selects similar treated and never-treated sites in this natural 

experiment. However, there are potential sources of endogeneity within the treatment 

group linked to the temporal nature of that identification strategy. Dam sites constructed 

earlier may be different to those constructed later. 

For example, dam sites with low population density may be developed first, as 

they receive fewer objections on a social basis. Policies to improve the negative impacts 

of large dams may also be developed in response to past poor experiences around large 

dam construction and have far-reaching consequences (Archsmith, 2017). In 2000, the 

World Commission on Dams released its report with the ambition of improving social 

and environmental issues around large dams; this may have caused a gradual policy 

shift, although scholars note that it was not widely adopted (Schulz & Adams, 2019).  

To investigate whether population density was different between treated and 

untreated sites, I compared the mean population density in 2004 in Table 17 using the 

LandScan dataset (Oak Ridge National Laboratory, 2018). Unlike many satellite-derived 

population datasets, LandScan does not use NTL as an input (C. Elvidge et al., 2009). 

Mean population density is similar in treated and untreated sites. While some sources of 

potential endogeneity can be investigated, such as population size, others, such as policy 

shift, will not, meaning any casual claims should be made with caution.  
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Table 17. Mean population density in year 2004 of the treated and never treated dam 

sites, derived from the LandScan dataset (Oak Ridge National Laboratory, 2018).  

Treatment Status Mean population density (standard error) Number of dam sites 

Never treated 68.8 (24.4)  43 

Treated 64.0 (6.8) 102 

  

6.6. Equations for aggregating effects 

The Callaway and Sant’Anna (CS) estimation for difference in differences (DiD) is both 

intuitive and complex. DiD should compare the difference in pathways between treated 

groups and control groups (which are untreated). Under DiD assumptions, it is possible 

to estimate the difference in pathways and therefore the treatment effect, if there are only 

two time periods with the canonical DiD Two-Way Fixed Effects regression, but when 

there are multiple time periods this method considers already treated groups as controls, 

which is intuitively wrong, and has been shown to diminish or reverse estimands of the 

treatment effect (Caetano & Callaway, 2023; Callaway, 2022; Callaway & Sant’Anna, 

2021; Cunningham, 2020; Zeldow et al., 2023).  

CS corrects for this and other criticisms but the underlying equations for the 

assumptions, control groups and aggregations involve complex notation, those pertinent 

to the study I give here, a full explanation and relevant notation is in Section 3 of 

Callaway and Sant’Anna (2021). 

My identification assumption assumes that treated and control sites will have 

similar pathways in the absence of treatment.  

Equation 1 

𝐴𝑇𝑇 = ( 𝑌𝑡 = 1, 𝐷 = 1 −  𝑌𝑡 = 0, 𝐷 = 1) – (𝑌𝑡 = 1, 𝐷 = 0 −  𝑌𝑡 = 0, 𝐷 = 1) 

Equation 1 expresses this expectation. 𝐴𝑇𝑇 is the average treatment effect for the treated, 

and  𝑌  the response variable. 𝑡  is the time period and 𝐷  is the treatment status, 0 is 

untreated and 1 is treated. This expectation would be violated if dam sites constructed 

earlier differed from those constructed later, as this is the basis of my identification 

strategy for control and treatment groups.  

For example, one might expect dams' socio-economic impact to be greater in 

earlier years while rural areas have less electricity (World Bank, 2017). This would 
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suggest that dams constructed in 2005 might have a larger treatment effect when 

compared to those constructed in 2007. In addition, dam sites with low population 

density may be developed first, as they receive fewer objections even as they impact the 

most marginalised. Finally, policies to improve the negative impacts of large dams may 

also be developed in response to past poor experiences around large dam construction 

and have far-reaching consequences (Archsmith, 2017). These potential sources of 

treatment endogeneity are discussed and explored in Appendix 6.6. 

For the CS approach, I employ standard potential outcome notation to describe 

my set-up (Baker et al., 2021; Gilpin et al., 2021) with multiple treatment timings 𝐺 and 

multiple treatment periods 𝑇. As the CS approach investigates the group treatment effect, 

a group in my study is defined as the time-period in which dam sites were constructed, 

for example, all dam sites constructed in 2005 would be considered in group 𝑔 2005, all 

dams sites treated in 2006 group 𝑔 2006 and so on. For each group 𝑔, in each time period 

𝑡, we can recover the group time ATT denoted as 𝐴𝑇𝑇(𝑔, 𝑡) when 𝐶 is the never-treated 

group (Callaway & Sant’Anna, 2020; Gilpin et al., 2021): 

Equation 4 

𝐴𝑇𝑇(𝑔, 𝑡) = [Y(g)t −  Y(C)t] − [Y(g)(g − 1) −  Y(C)(g − 1)] 

Note this is similar to how one would calculate the difference in pathways for a DiD 

with two time periods, only it is limited to one treatment year 𝑔, and never treated units 

𝐶. 

There are three steps to estimating 𝐴𝑇𝑇(𝑔, 𝑡): first, the optional calculation of the 

propensity scores for matching control and treatment groups using time-invariant 

covariates; second, the calculation of an individual ATT for each pairwise combination 

of time-period and treatment period using the fitted values from the first step 

(Equation 2); and, finally, aggregation of these pairwise combinations, for which there 

are multiple possible aggregations for different purposes – group ATT (Equation 5), 

overall ATT (Equation 6) and event-study style coefficients (Error! Reference source not 

found.). Calculation of standard errors is done by the recommended (Gilpin et al., 2021, 

p. 13) multiplier-type bootstrap, clustered on individual dam sites – the modalities of 

this are discussed in Callaway (2021, pp. 214–215). All these steps are automated in the 

DiD R package (Callaway & Sant’Anna, 2021). 
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Equation 4 produces an average treatment effect for each group in each year. This 

can make interpretation convoluted when the research question of interest is more 

generic, i.e. how do dams impact economic activity in the area around the dam. In order 

to aggregate the effect I use the following for each group cohort, i.e. dams constructed 

in 2005, 2006, 2007, 2008 and 2009: 

Equation 5 

𝜃𝑆(𝑔) =
1

𝑇 − 𝑔 + 1
∑ 1{𝑔 ≤ 𝑡}𝐴𝑇𝑇(𝑔, 𝑡)

𝑇

𝑡=2

 

where 𝜃𝑆(𝑔) is the parameter of interest, the treatment effect of each group 𝑔. The term 

1

𝑇−𝑔+1
 weights each average treatment effect for a group and time-period given by 

𝐴𝑇𝑇(𝑔, 𝑡), which are summed when the group is less than or equal to time 𝑡, given by 

the term 1{𝑔 ≤ 𝑡}. Consider the dam group constructed in 2009. The weight assigned to 

this group in the year 2009 is 1 – and 0 in all other time-periods. Meanwhile, the group 

of dams constructed in 2005 will comprise θ of five weighted 𝐴𝑇𝑇(𝑔 = 2006, 𝑡). 

This allows the investigation of whether or not there is a different trend 

depending on the year the dam was constructed. A priori, I do not expect to see a 

difference between groups of dams constructed in different years. Therefore, estimating 

each group individually is a helpful robustness check.  

𝜃𝑆(𝑔) forms the basis of a single aggregator used to look at the overall impact of 

dam construction.  

Equation 6 

𝜃𝑆
O = ∑ 𝜃𝑆(𝑔)𝑃(𝐺 =  𝑔)

𝑇

𝑡=2

 

𝜃𝑆
O aggregates the ATT of each group, based on the probability 𝑃 that the dam 

site belongs to the treatment group. The number of dam sites by year of construction is 

given in Table 19. This parameter gives an overall estimate of the impact of dam 

construction on economic activity in response to the research question. 

Event-study style presentations of DiD help infer whether the ATT is constant or 

dynamic over time. De Faria (2017) found that the impact of dams on socio-economic 

activity changed over time, and therefore I can assume that this warrants investigation. 

Callaway (2021) provides an estimator for this (Equation 1), which overcomes the 
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anomalies identified by Goodman-Bacon (2020) and Baker (2021), while also estimating 

whether the treatment effect attenuates or strengthens over time. 

6.7. Parallel trends 

The difference-in-difference identification strategy assumes that if a dam site had not 

been treated in time 𝑔 , or a dam had not been constructed, then the outcome would be 

the same as the trends seen in the control dam sites, where no dam was constructed but 

a dam is planned and is yet to be constructed.  

Roth et al. (2022) discuss the limitations of relying simply on observations of 

parallel trends, as it is not possible to compare that parallel trends would have occurred 

had the sites not been treated. Further, Sun (2020) discusses that the typical event-study 

approach may suffer when treatment timing is selected in medical studies, when those 

who have the most to benefit from a treatment might apply first. This kind of systematic 

bias in treatment timings may occur in dam construction, where depopulated areas are 

less likely to experience delays to construction due to an absence of protest and likely to 

experience the greatest uptick in economic activity if they were previously depopulated.  

Table 18. Wald statistic p-values to reject parallel trends test of all models. 

Model  p-value Size of 

treated 

group 

Size of untreated 

group 

With conditioning on co-variates 

(main model) 

0.31 102 43 

With two years of anticipation of 

treatment effect 

0.56 102 43 

Without the year 2004 0.68 90 43 

    

Dams with bottom 50th centile 

reservoirs 

0.33 58 14 

Dams with top 50th centile 

reservoirs  

0.00 44 29 

Reservoir areas masked  0.37 102 43 

 

The evidence I have to support the parallel trends assumption is the Walds 

statistic from estimating the group-time average treatment effects in the Callaway 

package (Callaway & Sant’Anna, 2021) and inspection of the pre-treatment trends in the 
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groups in Figure 1. As summarised in Table 18, all variations of the main model show 

that we fail to reject the parallel trends hypothesis except for the investigation of large 

reservoirs. 

6.8. Disaggregated results from group-specific average treatment 

effect on the treated 
 

 

Figure 10. Treatment effects for each construction year cohort for each calendar year 

investigated. Each panel represents one treatment group or cohort, those dam sites 

treated in 2005, 2006, 2007, 2008 and 2009, x axis is the calendar year of investigation. 

The natural logarithm of lit cells is given as the response variable – a proxy for 

socioeconomic activity. Confidence bands are at 95% - if these cross 0 (red dotted line) 

– then effect is not significant (p<0.05) – standard errors are calculated by bootstrap 

and clustered at the dam site level.  

Figure 10 shows the group trends in night lights between 2004 and 2009, where 

groups are the year in which a dam was constructed. Although, in isolation, these do not 

indicate the impact of large dams on socio-economic activity, given the decomposed 

nature of reporting the interaction between the construction year and the year that the 

night lights were recorded, there are two things to observe. 

First, this figure provides evidence that the parallel trends assumption is met, for 

the pre-treatment groups (the red lines) the confidence bands cross zero. There are no 

significant changes until treatment takes place.  
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Second, the post-treatment confidence bands cross zero, except for the latter 

years treated in 2006 and 2007. If the confidence bands cross zero, the group-time 

average treatment effects are not significant. This corresponds to Figure 11, which gives 

the group treatment effects for each cohort, which shows that dams constructed in 2006 

and 2007 have significantly lower socio-economic activity when compared to the never 

treated sites.   

 

 

Figure 11. ATT is Average Treatment effect on the Treated, confidence bands are at 

95%, and significant years do not overlap with 0. This shows that the number of lit 

cells decreased within 15 km after dam construction in 2006 and 2007. 

The power of the analysis is low for any given pairwise comparison of never 

treated sites to treated sites in a particular year. Therefore, it is not surprising that every 

group is not significant. For example, the group constructed in 2005 had only 12 dams 

(see Table 19). 

The third thing to note is that socio-economic activity decreases after treatment 

compared to the pre-treatment periods. This is reflected in the aggregated results for 

each year group in Figure 11. It is also observed when I aggregate the group treatment 

effects, following Callaway et al. (2020) as described in section 2.1.5. 
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Table 19. The number of dams constructed in each year in the sample. 

Year of construction Number of dams in 

sample 

Yet to be constructed (0) 43 

2005 12 

2006 23 

2007 20 

2008 20 

2009 27 

Total 145 

6.9. Calibration of satellites 

 

Figure 12. Each satellite has a distinct signature and trend. F16, used as the main model, 

has one year out of trend, but is otherwise the smoothest and longest period. 
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